Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium vinylidene, formation

In 1998, Wakatsuki et al. reported the first anti-Markonikov hydration of 1-alkynes to aldehydes by an Ru(II)/phosphine catalyst. Heating 1-alkynes in the presence of a catalytic amount of [RuCljlCgHs) (phosphine)] phosphine = PPh2(QF5) or P(3-C6H4S03Na)3 in 2-propanol at 60-100°C leads to predominantly anti-Markovnikov addition of water and yields aldehydes with only a small amount of methyl ketones (Eq. 6.47) [95]. They proposed the attack of water on an intermediate ruthenium vinylidene complex. The C-C bond cleavage or decarbonylation is expected to occur as a side reaction together with the main reaction leading to aldehyde formation. Indeed, olefins with one carbon atom less were always detected in the reaction mixtures (Scheme 6-21). [Pg.200]

Highly reactive organic vinylidene and allenylidene species can be stabilized upon coordination to a metal center [1]. In 1979, Bruce et al. [2] reported the first ruthenium vinylidene complex from phenylacetylene and [RuCpCl(PPh3)2] in the presence of NH4PF6. Following this report, various mthenium vinylidene complexes have been isolated and their physical and chemical properties have been extensively elucidated [3]. As the a-carbon of ruthenium vinylidenes and the a and y-carbon of ruthenium allenylidenes are electrophilic in nature [4], the direct formation of ruthenium vinylidene and ruthenium allenylidene species, respectively, from terminal alkynes and propargylic alcohols provides easy access to numerous catalytic reactions since nucleophilic addition at these carbons is a viable route for new catalysis (Scheme 6.1). [Pg.193]

Movassaghi et al. [21[ reported the synthesis of substituted pyridine derivatives via ruthenium-catalyzed cycloisomerization of 3-azadienynes. To avoid the isolation of the chemically active alkynyl imines, trimethysilyl alkynyl amines served as initial substrates, as shown in Scheme 6.19. The formation of ruthenium vinylidene intermediates is accompanied by a 1,2-silyl migration according to controlled... [Pg.202]

The proposed mechanism involves the formation of ruthenium vinylidene 97 from an active ruthenium complex and alkyne, which upon nucleophilic attack of acetic acid at the ruthenium vinylidene carbon affords the vinylruthenium species 98. A subsequent intramolecular aldol condensation gives acylruthenium hydride 99, which is expected to give the observed cyclopentene products through a sequential decarbonylation and reductive elimination reactions. [Pg.211]

The hydrative cyclization involves the formation of a ruthenium vinylidene, an anti-Markovnikov addition of vater, and cyclization ofan acylmetal species onto the alkene. Although the cyclization may occur through a hydroacylation [32] (path A) or Michael addition [33] (path B), the requirement for an electron- vithdra ving substituent on the alkene and lack of aldehyde formation indicate the latter path vay to be the more likely mechanism. Notably, acylruthenium complex under vent no decarbonylation in this instance. [Pg.212]

From simple terminal alkynes, the catalytic system generated in this case is also thought to proceed via a ruthenium vinylidene active species and is very efficient for the formal elimination of tvater by formation of an organic adduct (Equation 10.3) [12]. [Pg.315]

Scheme 10.14 rationalizes the divergent behavior of the two catalytic systems in these selective transformations of pent-l-yn-ols. The presence of phosphine ligands promotes the formation of ruthenium vinylidene species which are key intermediates in both reactions. The more electron-rich (p-MeOC6Fl4)3P phosphine favors the formation of a cyclic oxacarbene complex which leads to the lactone after attack of the N-hydroxysuccinimide anion on the carbenic carbon. In contrast, the more labile electron-poor (p-FC6H4)3P) phosphine is exchanged with the N-hydroxysuccinimide anion and makes possible the formation of an anionic ruthenium intermediate which liberates the cyclic enol ether after protonation. [Pg.323]

Scheme 10.14 Mechanistic proposal for cyclic enol ether and lactone formation based on a common ruthenium vinylidene intermediate. Scheme 10.14 Mechanistic proposal for cyclic enol ether and lactone formation based on a common ruthenium vinylidene intermediate.
The formation of a ruthenium vinylidene is proposed as the key intermediate in the regioselective addition of hydrazine to terminal alkynes [55]. This reaction, which proceeds via addition of the primary amino group of a 1,1-disubstituted hydrazine followed by deamination, provides an unprecedented access to a variety of aromatic and aliphatic nitriles. The tris(pyrazolyl)borate complex RuCl(Tp)(PPh3)2 gave the best catalytic activity in the absence of any chloride abstractor (Scheme 10.17). [Pg.325]

Terminal alkynes can undergo several types of interaction with ruthenium centers. In addition to the formation of ruthenium vinylidene species, a second type of activation provides alkynyl ruthenium complexes via oxidative addition. [Pg.327]

Scheme 6.21 shows the proposed mechanism for this class of transformations, which involve (i) the formation of a ruthenium-vinylidene intermediate through... [Pg.146]

Cp Ru [14] and TpRu [20] complexes have also been studied in depth. As represented in Scheme 2c, the catalytic alkyne dimerization proceeds via coordinatively unsaturated ruthenium alkynyl species. Either a direct alkyne insertion and/or previous vinylidene formation are feasible pathways that determine the selectivity. The head-to-tail dimer cannot be formed by the vinylidene mechanism, whereas the E or Z stereochemistry is controlled by the nature of the alkynyl-vinylidene coupling. [Pg.65]

The formation of metal vinylidene complexes directly from terminal alkynes is an elegant way to perform anti-Markovnikov addition of nucleophiles to triple bonds [1, 2], The electrophilic a-carbon of ruthenium vinylidene complexes reacts with nucleophiles to form ruthenium alkenyl species, which liberate this organic fragment on protonolysis (Scheme 1). [Pg.73]

Thiolate-bridged diruthenium complexes such as Cp RuCl(p2-SR)2RuCp Cl catalyze the propargylic substitution reaction of propargylic alcohol derivatives with various carbon-centered nucleophiles [118-120]. Ketones [119] (Eq. 88), aromatic compounds [120] (Eq. 89), or alkenes thus selectively afford the corresponding propargylated products with C-C bond formation. An allenylidene intermediate is proposed in these reactions. They are detailed in the chapter Ruthenium Vinylidenes and Allenylidenes in Catalysis of this volume. [Pg.36]

Several ruthenium complexes are able to promote the classical Markovnikov addition of O nucleophiles to alkynes via Lewis-acid-type activation of triple bonds. Starting from terminal alkynes, the anti-Markovnikov addition to form vinyl derivatives of type 1 (Scheme 1) is less common and requires selected catalysts. This regioselectivity corresponding to the addition of the nucleophile at the less substituted carbon of the C=C triple bond is expected to result from the formation of a ruthenium vinylidene intermediate featuring a highly reactive electrophilic Ca atom. [Pg.127]

The formation of vinylcarbamates is restricted to terminal alkynes, which is in line with the formation of a metal vinylidene intermediate, and also to secondary amines. Indeed, a catalytic reaction also takes place under similar conditions with primary aliphatic amines but it leads to the formation of symmetrical ureas (Scheme 3) [10]. The catalytic system generated in this case is also thought to proceed via a ruthenium vinylidene active species and is very efficient for the formal elimination of water by formation of an organic adduct. The proposed general catalytic cycle, which applies for the formation of vinylcarbamates and ureas, is shown in Scheme 4 [11]. [Pg.128]

Terminal alkynes can undergo several types of interaction with ruthenium centres. In addition to the formation of ruthenium vinylidene species, a second type of activation provides alkynyl ruthenium complexes via oxidative addition. When these two types of coordination take place at the same metal centre, the migration of the alkynyl ligand onto the Ca atom of the vinylidene can occur to form enynyl intermediates, which upon protonation by the terminal alkyne lead to the formation of enynes corresponding to alkyne dimerization... [Pg.138]

The cyclo addition of the alkene to the ruthenium vinylidene species leads to a ruthenacyclobutane which rearranges into an allylic ruthenium species resulting from / -elimination or deprotonation assisted by pyridine and produces the diene after reductive elimination (Scheme 16). This mechanism is supported by the stoichiometric C-C bond formation between a terminal alkyne and an olefin, leading to rf-butatrienyl and q2-butadienyl complexes via a ruthenacyclobutane resulting from [2+2] cycloaddition [62]. [Pg.141]

The selective intramolecular nucleophilic addition of a hydroxy group at Cyof a ruthenium allenylidene generated by activation of propargylic alcohol by RuCl(Cp)(PPh3)2/NH4PF6 provides a ruthenium vinylidene species, which reacts with allylic alcohols as previously described in the section Formation of Unsaturated Ketones (Eq. 11, Scheme 18) [79]. This unprecedented tandem reaction makes possible the construction of tetrahydrofuran derivatives in good yields and has been used as a key step in the synthesis of (-)calyculin A [80]. [Pg.144]

The ability of the binuclear complex [Cp RuCl(p2-SR)2RuCl(Cp )] to generate cationic allenylidene complexes by activation of terminal prop-2-ynols in the presence of NH4BF4 as a chloride abstractor opens the way to a variety of catalytic transformations of propargylic alcohols involving nucleophilic addition at the Cy atom of the ruthenium allenylidene intermediate (Scheme 19). This leads to the formation of a functional ruthenium vinylidene species which tau-tomerizes into an -coordinated alkyne that is removed from the ruthenium centre in the presence of the substrate. [Pg.145]

The interaction of an alkyne with (tj5-C5H5)(PR3)2RuX can result in the formation of a wide variety of ruthenium complexes. The nature of the products formed depends on the conditions used and the type of alkyne reacted. Reactions between I and terminal alkynes in the presence of ammonium hexafluorophosphate lead to the formation of cationic monosubstituted ruthenium vinylidene complexes in high yield, as shown for phenylacetylene in Eq. (61) (4,67,68). [Pg.34]

The formation of complexes 109 has been shown to proceed via a vinylidene ruthenium intermediate (112), which has been indirectly isolated by protonation of an acetylide-ruthenium complex (112). Arene ruthenium vinylidene complexes 113 appear to be much more reactive than their isoelectronic (C5H5)(R3P)2Ru=C=CHR+ complexes (63,66). [Pg.183]

Here, we shall focus on ruthenium-catalyzed nucleophilic additions to alkynes. These additions have the potential to give a direct access to unsaturated functional molecules - the key intermediates for fine chemicals and also the monomers for polymer synthesis and molecular multifunctional materials. Ruthenium-catalyzed nucleophilic additions to alkynes are possible via three different basic activation pathways (Scheme 8.1). For some time, Lewis acid activation type (i), leading to Mar-kovnikov addition, was the main possible addition until the first anfi-Markovnikov catalytic addition was pointed out for the first time in 1986 [6, 7]. This regioselectiv-ity was then explained by the formation of a ruthenium vinylidene species with an electron-deficient Ru=C carbon site (ii). Although currently this methodology is the most often employed, nucleophilic additions involving ruthenium allenylidene species also take place (iii). These complexes allow multiple synthetic possibilities as their cumulenic backbone offers two electrophilic sites (hi). [Pg.189]

It is noteworthy that computational and experimental studies have shown that the formation of ruthenium-vinylidenes from terminal alkynes and ruthenium hydride complexes also proceeds via the formation of t -vinyl intermediate (Scheme 8.4) [14]. Thus, in this case the vinylidene ligand is not formed directly from the alkyne, and its /3-hydrogen atom arises from the hydrido ligand. [Pg.191]

Furans have also been obtained via a related isomerization of terminal epoxyalk-ynes catalyzed by RuCl(Tp)(MeCN)2 in the presence of a base at 80 °C in 1,2-dichlo-roethane. However, in this case their formation is explained by an intramolecular nucleophilic addition of the oxygen atom of the epoxide onto the a-carbon atom of a ruthenium-vinylidene intermediate (Scheme 8.9) [20]. For this reason, the reaction is specific of terminal alkynes. A large variety of functional groups such as ether, ester, acetal, tosylamide, nitrile, are tolerated by the reaction conditions and allow the formation of functionalized furans. [Pg.193]

Homopropargylic alcohols as well as propargylic epoxides and pentynols readily form cyclic ruthenium alkoxycarbenes upon intramolecular nucleophilic addition of the OH group to the electrophilic a-carbon of ruthenium-vinylidene species. Their oxidation in the presence of N-hydroxysuccinimide leads to the formation of penta-lactones. The best catalytic system reported until now for this transformation of but-3-ynols is based on RuCl(C5H5)(cod), tris(2-furyl)phosphine, NaHCOs as a base, in the presence of nBu4NBr or nBu4NPp6, and N-hydroxysuccinimide as the oxidant in DMF-water at 95 °C (Scheme 8.11) [22]. [Pg.195]

Whereas the catalytic hydrosilylation of alkynes was one of the first methods of controlled reduction and functionalization of alkynes, the ruthenium-catalyzed hydroamination of alkynes has emerged only recently, but represents a potential for the selective access to amines and nitrogen-containing heterocydes. It is also noteworthy that, in parallel, the ruthenium activation of inert C-H bonds allowing alkyne insertion and C-C bond formation also represents innovative aspects that warrant future development. Among catalytic additions to alkynes for the production of useful products, the next decade will clearly witness an increasing role for ruthenium-vinylidenes in activation processes, and also for the development of ruthenium-catalyzed hydroamination and C-H bond activation. [Pg.214]


See other pages where Ruthenium vinylidene, formation is mentioned: [Pg.227]    [Pg.227]    [Pg.137]    [Pg.149]    [Pg.313]    [Pg.322]    [Pg.329]    [Pg.307]    [Pg.308]    [Pg.134]    [Pg.47]    [Pg.66]    [Pg.195]    [Pg.134]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



Ruthenium vinylidene

Ruthenium vinylidenes

Vinylidene

Vinylidenes

Vinylidenes, formation

© 2024 chempedia.info