Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes polymerization

In contrast to the situation with copper-based catalysis, most studies on ruthenium-based catalysts have made use of preformed metal complexes. The first reports of ruthenium-mediated polymerization by Sawamoto and coworkers appeared in I995.26 In the early work, the square pyramidal ruthenium (II) halide 146 was used in combination with a cocatalyst (usually aluminum isopropoxide). [Pg.495]

Vinyl substituted bipyridine complexes of ruthenium 9 and osmium 10 can be electropolymerized directly onto electrode surfaces The polymerization is initiated and controlled by stepping or cycling the electrode potential between positive and negative values and it is more successful when the number of vinyl groups in the complexes is increased, as in 77 A series of new vinyl substituted terpyridinyl ligands have recently been synthesized whose iron, cobalt and ruthenium complexes 72 are also susceptible to electropolymerization... [Pg.56]

Nitration of the surface of polypyrrole and the subsequent reduction of the nitrate groups has been reported [244] and Bidan et al. [306, 307] have investigated the electrochemistry of a number of polymers based on pyrroles with /V-substituents which are themselves electrochemically active. Polypyrrole has also been successfully deposited onto polymeric films of ruthenium complexes [387], and has been used as an electrode for the deposition and stripping of mercury [388], As with most conducting polymers, several papers have also appeared on the use of polypyrrole in battery systems (e.g. [327, 389] and Ref. therein). [Pg.50]

Synthesis of block copolymers of norbornene derivatives, with different side groups, has been reported via ROMP [101]. Initially, exo-N-bulyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide was polymerized in acetone at room temperature with a ruthenium initiator (Scheme 40). The conversion of the reaction was quantitative. Subsequent addition of norbornene derivative carrying a ruthenium complex led to the formation of block copolymers in 85% yield. Due to the presence of ruthenium SEC experiments could not be performed. Therefore, it was not possible to determine the molecular weight... [Pg.55]

Sawamoto et al. have revealed that the ruthenium complex induces the living radical polymerization of MMA [30,273-277]. For example, RuCl2(PPh)3 provided poly(MMA) with Mw/Mn 1.1 and the block copolymers. This system has a unique characteristic in that it is valid not only for MMA and other methacrylates, but also for acrylates and St derivatives. [Pg.123]

For the synthesis of carbohydrate-substituted block copolymers, it might be expected that the addition of acid to the polymerization reactions would result in a rate increase. Indeed, the ROMP of saccharide-modified monomers, when conducted in the presence of para-toluene sulfonic acid under emulsion conditions, successfully yielded block copolymers [52]. A key to the success of these reactions was the isolation of the initiated species, which resulted in its separation from the dissociated phosphine. The initiated ruthenium complex was isolated by starting the polymerization in acidic organic solution, from which the reactive species precipitated. The solvent was removed, and the reactive species was washed with additional degassed solvent. The polymerization was completed under emulsion conditions (in water and DTAB), and additional blocks were generated by the sequential addition of the different monomers. This method of polymerization was successful for both the mannose/galactose polymer and for the mannose polymer with the intervening diol sequence (Fig. 16A,B). [Pg.232]

Allenylidene-ruthenium complex Ib readily promotes the ROMP of norbornene, much faster than the precursor RuCl2(PCy3)(p-cymene) [39] (Table 8.1, entry 1). The ROMP of cyclooctene requires heating at 80 °C (5 min), however a pre-activation of the catalyst allows the polymerization to take place at room temperature. The activation consists, for example, in a preliminary heating at 80 °C or UV irradiation of the catalyst before addition of the cyclic aikene, conditions under which rearrangement into indenylidene and arene displacement take place [39] (Table 8.1, entries 2,3). The arene-free allenylidene complexes, the neutral RuCl2(=C=C=CPh2)... [Pg.255]

The catalyst, Ru(PMe3)4(GeMe3)2, is active at levels as low as 0.01 mol%, depending on monomer purity. As the catalyst is prepared from the reaction of HGeMe3 with Ru(PMe3)4Me2, this more readily obtainable ruthenium complex can be used directly in the polymerization as a convenient catalyst precursor. The properties of the polygermanes prepared with either complex appear to be identical. [Pg.246]

Despite the extensive application of ruthenium complexes in DSSC, transition metal containing polymers have received relatively little attention in the fabrication of polymeric photovoltaic cells. Most of the early works on ruthenium containing polymers were focused on the light-emitting properties.58-60 Several examples of ruthenium terpyridine/bipyridine containing conjugated polymers and their photoconducting/electroluminescent properties were reported.61,62... [Pg.171]

In this section, some ruthenium complex containing polymers incorporated with charge transport functionalities are presented. Being incorporated with both photosensitizing and charge transport units in the same polymer molecule, they are considered promising candidates for polymeric photovoltaic cells. However, the photovoltaic properties have not been reported so far. [Pg.182]

Interest continues in pyrazine-bridged polymeric ruthenium complexes. Following an earlier communication,48 further details have been given of a general synthetic route to pyrazine-bridged Ru11 bipyridyl complexes (equations 10 and ll).49 Employing the reaction of Ru—N02 complexes to yield Ru—NO, in combination with the... [Pg.337]

Although the above discussion is centered on the synthesis of polymeric osmium and ruthenium complexes, the methods employed are also very successful in the preparation of mononuclear complexes. In this context, the preparation of ruthenium or osmium complexes which are suitable for the formation of self-assembled monolayers (see Section 4.3 above) can be prepared by using the same approach. Starting from the precursor [M(bpy)2Cl2], one chloride atom can be replaced to yield complexes of the type [M(bpy)2Cl L]+, where L is the surface active ligand. In the presence of water, species of the type [M(bpy)2(L)2]2+ are obtained. [Pg.135]

Ruthenium catalysts found many applications in C-C bond formation reactions (selected reviews [157-161]). Ruthenium occurs mostly in oxidation states +2 and +3, but lower as well as higher oxidation states can easily be reached. Thus ruthenium compounds are frequently used in oxidative transformations proceeding by either single or two electron transfer pathways (selected reviews [162-164]). It has long been known that ruthenium complexes can be used for the photoactivation of organic molecules (selected reviews [165, 166]). Ruthenium complexes are applied as catalysts in controlled or living radical polymerizations [167-169]. [Pg.224]

Analogues of chiral Pybox have been reported by other chemists and have been applied to ACP with ruthenium catalysts [37,38]. For example, Pybox substituted by a vinyl group at the 4-position of the pyridine skeleton was polymerized with styrene and divinylbenzene to give immobilized ligands, the ruthenium complexes of which were used to give 85% ee for ACP with EDA and styrene [38]. [Pg.87]

Thanks to the development of the Grubbs benzylidene catalyst (2) and other related ruthenium complexes, olefin metathesis has experienced spectacular advances over the past 10 years. The various incarnations of the reaction (acyclic diene metathesis, ring-closing metathesis, ring-opening metathesis polymerization, etc.) have now acquired first rank importance in synthesis. Clearly, the emergence of a similar, generic, efficient catalytic system for con-... [Pg.169]

Terminal alkenes and cycloalkenes have been found to react in the presence of the polymeric ruthenium complex [Ru2(CO)4(p-OAc)2] with methyl diazo(trimethylsilyl)acetate (Eq. 8) [17]. [Pg.201]

It is well known that hydrosilylation processes usually catalyzed by Pt and Rh complexes can be efficiently applied in polymer chemistry. Ru3(CO)12 was effectively used for the functionalization of polysiloxanes via hydrosilylation of allyl derivatives with polymethylhydrosiloxanes [175]. On the other hand, polymerization via coupling of activated aromatics with dienes occurs mostly in the presence of ruthenium complexes as catalysts (Eq. 111). For representative references see Ref. [176] and papers cited therein. [Pg.239]


See other pages where Ruthenium complexes polymerization is mentioned: [Pg.178]    [Pg.228]    [Pg.148]    [Pg.33]    [Pg.750]    [Pg.124]    [Pg.215]    [Pg.224]    [Pg.236]    [Pg.163]    [Pg.665]    [Pg.117]    [Pg.135]    [Pg.148]    [Pg.373]    [Pg.107]    [Pg.678]    [Pg.567]    [Pg.226]    [Pg.186]    [Pg.397]    [Pg.486]    [Pg.119]    [Pg.119]    [Pg.176]    [Pg.89]    [Pg.173]    [Pg.184]    [Pg.24]    [Pg.158]    [Pg.163]    [Pg.163]   
See also in sourсe #XX -- [ Pg.11 , Pg.98 , Pg.112 ]




SEARCH



Complexes polymeric

Polymeric materials polymers Ruthenium complex

Polymerization with Ruthenium Indenylidene Complexes

© 2024 chempedia.info