Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium amine carbonylation catalyzed

Amine Carbonylation Catalyzed by Ruthenium Complexes under Mild Conditions... [Pg.175]

The ruthenium carbonyl complexes [Ru(CO)2(OCOCH3)] n, Ru3(CO)12, and a new one, tentatively formulated [HRu-(CO)s ] n, homogeneously catalyze the carbonylation of cyclic secondary amines under mild conditions (1 atm, 75°C) to give exclusively the N-formyl products. The acetate polymer dissolves in amines to give [Ru(CO)2(OCOCH3)(amine)]2 dimers. Kinetic studies on piperidine carbonylation catalyzed by the acetate polymer (in neat amine) and the iiydride polymer (in toluene-amine solutions) indicate that a monomeric tricarbonyl species is involved in the mechanism in each case. [Pg.175]

Ruthenium dihydride complex [Ru(H)2(CO)(PPh3)3], activated by treatment with st3rrene, catalyzes several hydrosilylation polymerization processes, such as the reaction of tereftaldehyde with 1,3-tetramethyldisiloxane and hydrosilylation of poly(l-hydrido-l,3,3,5,5-pentamethyltrisiloxane) with benzophenone (221,222). [Ru3(CO)i2] was found catalytically active in the hydrosilylation of acetophenone with HSi(OEt)3 (222). The same cluster and several ruthenium carbonyl complexes efficiently catalyze the reduction of linear and cyclic amides with trisubstituted silanes to give the corresponding amines (224). Activated diruthenium and triruthenium carbonyls catalyze the hydrosilylation of ketones, as well as that of aldehydes wdth different silanes (225). First-generation Grubbs... [Pg.1301]

Allyl methylcarbonate reacts with norbornene following a ruthenium-catalyzed carbonylative cyclization under carbon monoxide pressure to give cyclopentenone derivatives 12 (Scheme 4).32 Catalyst loading, amine and CO pressure have been optimized to give the cyclopentenone compound in 80% yield and a total control of the stereoselectivity (exo 100%). Aromatic or bidentate amines inhibit the reaction certainly by a too strong interaction with ruthenium. A plausible mechanism is proposed. Stereoselective CM-carboruthenation of norbornene with allyl-ruthenium complex 13 followed by carbon monoxide insertion generates an acylruthenium intermediate 15. Intramolecular carboruthenation and /3-hydride elimination of 16 afford the -olefin 17. Isomerization of the double bond under experimental conditions allows formation of the cyclopentenone derivative 12. [Pg.301]

Hydrolysis of the ester forms adipic acid, used to manufacture nylon—6. Carbonylations of nitroaromatics are used to synthesize an array of products including amines, carbamates, isocyanates, ureas and azo compounds. These reactions are catalyzed by iron, ruthenium, rhodium and palladium complexes. For example, carhonylation of nitrobenzene in the presence of methanol produces a carbamate ... [Pg.190]

The dimeric [Ru(CO)o(OCOCH3) (pip)]2 complex (2) may be used at the appropriate ruthenium molarities to reproduce exactly the uptake plots observed with the polymeric catalyst. Solution IR measurements in regions of maximum activity for both 1- and 2-catalyzed systems showed the presence of the amine dimers which could be readily precipitated at any stage of the catalytic carbonylation by adding water. [Pg.179]

The results show that a number of ruthenium carbonyl complexes are effective for the catalytic carbonylation of secondary cyclic amines at mild conditions. Exclusive formation of N-formylamines occurs, and no isocyanates or coupling products such as ureas or oxamides have been detected. Noncyclic secondary and primary amines and pyridine (a tertiary amine) are not effectively carbonylated. There appears to be a general increase in the reactivity of the amines with increasing basicity (20) pyrrolidine (pKa at 25°C = 11.27 > piperidine (11.12) > hexa-methyleneimine (11.07) > morpholine (8.39). Brackman (13) has stressed the importance of high basicity and the stereochemistry of the amines showing high reactivity in copper-catalyzed systems. The latter factor manifests itself in the reluctance of the amines to occupy more than two coordination sites on the cupric ion. In some of the hydridocar-bonyl systems, low activity must also result in part from the low catalyst solubility (Table I). [Pg.183]

In 1970 the transition metal catalyzed formation of alkyl formates from CO2, H2, and alcohols was first described. Phosphine complexes of Group 8 to Group 10 transition metals and carbonyl metallates of Groups 6 and 8 show catalytic activity (TON 6-60) and in most cases a positive effect by addition of amines or other basic additives [26 a, 54-58]. A more effective catalytic system has been found when carrying out the reaction in the supercritical phase (TON 3500) [54 a]. Similarly to the synthesis of formic acid, the synthesis of methyl formate in SCCO2 is successful in the presence of methanol and ruthenium(II) catalyst systems [54 b]. [Pg.1202]

Nomura, K. Ishino, M. Hazama, M. (1993) Selective reduction of aromatic nitrocompounds affording aromatic-amines under CO/H2O conditions catalyzed by phosphine-added rhodium and ruthenium carbonyl-complexes, J. Mol Catal,1, 273-82. [Pg.221]

Conceptually similar palladium-catalyzed cascade reactions have been developed, involving molecular-queuing cycloaddition, cyclocondensation and Diels-Alder reactions [71], cydization-anion-capture-olefin metathesis [72], carbonylation-allene insertion [73], carbonylation/amination/Michael addition [74], sequential Petasis reaction/palladium-catalyzed process [75], supported allenes as substrates [76], and palladium-ruthenium catalysts [77]. [Pg.343]


See other pages where Ruthenium amine carbonylation catalyzed is mentioned: [Pg.177]    [Pg.8]    [Pg.441]    [Pg.178]    [Pg.112]    [Pg.514]    [Pg.329]    [Pg.243]    [Pg.65]    [Pg.178]    [Pg.147]    [Pg.228]    [Pg.193]    [Pg.235]    [Pg.45]    [Pg.198]    [Pg.45]    [Pg.193]    [Pg.235]    [Pg.10]    [Pg.708]    [Pg.56]   


SEARCH



Amination carbonylative

Amine carbonylation catalyzed

Amines carbonylations

Carbonyl amination

Carbonylation catalyzed

Carbonylative ruthenium-catalyzed

Catalyzed Carbonylations

Ruthenium amine

Ruthenium carbonyl

Ruthenium carbonylations

Ruthenium catalyzed

© 2024 chempedia.info