Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber hydrocarbon content

The density of natural rubber is about 0.913 g per cc, and its bulk density is about 0.85 g per cc. The rubber hydrocarbon content of raw natural rubber is about 94%. The presence of small quantities of non-rubber constituents such as proteins, fats, fatty acids, carbohydrates, and mineral matter in natural rubber influences its physical and chemical properties. [Pg.422]

Rubber Hydrocarbon Content in Liner HIIR/IIR, % vol Liner Permeability (O X 10 ) at 65 C-F Equilibrium Intracarcass Pressure (lOF) (MPa) FMVSS 109 Step-Load Hours to Failure... [Pg.470]

Rubber hydrocarbon content in liner mm/nR, %Vol Liner permeability (Ox 10 ) at 65 C+ Equilibrium intracarcass pressure (lOF). MPa FMVSS 109 step-load hours to failure... [Pg.451]

The percentage sulphur (determined in the un-vulcanized reclaim) and the available rubber hydrocarbon are taken into consideration while evolving the compound formulation. It should be noted that reclaimed rubber is not all rubber. In arriving at the total rubber content in the rubber formulation containing reclaim, allowance must be made for its rubber content. For example in the following blend of smoked sheet and whole tyre reclaim, the total rubber content is to be considered as 100 parts instead of 125 parts as below and the proportion of other ingredients should be worked out accordingly on "parts per hundred rubber" (phr) basis. [Pg.17]

Fresh natural rubber latex contains about 30-40% of rubber hydrocarbon that is normally referred to as dry rubber content (DRC). However, the total solid content (TSC) is higher than the DRC due to the presence of non-rubbers in the latex, at around 5%. The DRC and non-rubber content may change due to many factors such as clone, soil and climate conditions, season, type of fertilizers used, and tapping frequency. Most of these non-rubbers are dissolved or suspended in the aqueous serum or adsorbed on the surface of rubber particles. They become trapped, tenaciously held, or co-precipitated during coagulation of the rubber probably due to their poor solubility in the aqueous medium or strong entanglement with the rubber molecule. The major non-rubbers are lipids, proteins and amino acids, minerals, inositols and carbohydrates, as shown in Table 3.1. [Pg.73]

Connections finom the sample container to the sample inlet of the instrument should be made with stainless steel or with short pieces of TFE-fluorocarbon. Copper, vinyl, or rubber connections are not acceptable. Heated lines may be necessary for high hydrocarbon content samples. [Pg.294]

Butadiene and styrene may be polymerised in any proportion. The Tfs of the copolymers vary in an almost linear manner with the proportion of styrene present. Whereas SBR has a styrene content of about 23.5% and is rubbery, copolymers containing about 50% styrene are leatherlike whilst with 70% styrene the materials are more like rigid thermoplastics but with low softening points. Both of these copolymers are known in the rubber industry as high-styrene resins and are usually used blended with a hydrocarbon rubber such as NR or SBR. Such blends have found use in shoe soles, car wash brushes and other mouldings but in recent times have suffered increasing competition from conventional thermoplastics and to a less extent the thermoplastic rubbers. [Pg.294]

Fig. 25. Evolution of the tack of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. Tack was obtained as the immediate T-peel strength of joints produced with 0.6 mm thick styrene-butadiene rubber strips placed in contact without application of pressure. Peeling rate = 10 cm/min. Fig. 25. Evolution of the tack of polychloroprene-aromatic hydrocarbon resin blends as a function of the resin content. Tack was obtained as the immediate T-peel strength of joints produced with 0.6 mm thick styrene-butadiene rubber strips placed in contact without application of pressure. Peeling rate = 10 cm/min.
The chemical nature of the tackifier also affects the compatibility of resin-elastomer blends. For polychloroprene (a polar elastomer) higher tack is obtained with a polar resin (PF blend in Fig. 27) than with a non-polar resin (PA blend in Fig. 27). Further, the adhesion of resin-elastomer blends also decreases by increasing the aromatic content of the resin [29]. Fig. 28 shows a decrease in T-peel strength of styrene-butadiene rubber/polychloroprene-hydrocarbon resin blends by increasing the MMAP cloud point. Because the higher the MMAP... [Pg.622]

Rubber or caoutchouc is obtained by coagulation of the latex of numerous plants belonging to different families, principally to the Euphorbiaceae, Artocarpeae and Apocyneae. Whatever its origin and method of preparation, its value depends essentially on the content in hydrocarbons pure rubber) and on the substances accompanying it (resinous matters, various impurities). [Pg.321]

In particular, crude polymerizates prepared in the presence of AIBN as initiator, which yield resonance stabilized radicals (17) that are unable to extract hydrogen from hydrocarbon supports (I, 18) show the same content of non-extractable rubber as that of the polymerizates prepared in the presence of active radicals in the hydrogen extraction from hydrocarbon polymers, such as those derived from the decomposition of benzoyl peroxide. [Pg.278]

Several conclusions have to be drawn. The first is related to the obvious gap between the empiricism and even archaism of most of industrial cationic polymerization processes and the level of fundamental science devoted for decades to these reactions. Previous chapters in this volume clearly illustrate the situation. This feature was pointed out in the early book of Kennedy and Marechal [1], and the explanation based on the very favorable price/performances characteristics of the products is still realistic. Nevertheless it is noteworthy that recent improvements or new processes based on more scientific approaches led to a better control of the polymerization, of polymer structure, and to high-performance commercial products which will increasingly occupy the market. This is the case for the recently marketed reactive BF3-based polybutenes with high content of exomethylenic chain ends, for the strongly developing pure monomer hydrocarbon resins ( + 8% in 1994), or for the new benzyl halide-based halobutyl rubber, and it is revealing that these products represent the three families of cationically prepared industrial polymers... [Pg.740]

Rubbers are plasticized with petroleum oils, before vulcanization, to improve processability and adhesion of rubber layers to each other and to reduce the cost and increase the softness of the final product. Large quantities of these oil-extended rubbers are used in tire compounds and related products. The oil content is frequently about 50 wt% of the styrene-butadiene rubber. The chemical composition of the extender oil is important. Saturated hydrocarbons have limited compatibility with most rubbers and may sweat-out. Aromatic oils are more compatible and unsaturated straight chain and cyclic compounds are intermediate in solvent power. [Pg.462]

Medium-c/5 lithium-polybutadiene was first developed by Firestone Tire and Rubber Company in 1955 [86]. Solution polymerization using anionic catalysts is usually based on butyllithium. Alkyllithium initiation does not have the high stereospecificity of the coordination catalysts based on titanium, cobalt, nickel, or neodymium compounds. Polymerization in aliphatic hydrocarbon solvents such as hexane or cyclohexane yields a polymer of about 40 % cis, 50 % trans structure with 10 % 1,2-addition. However, there is no need for higher cis content because a completely amorphous structure is desired for mbber applications the glass transition temperature is determined by the vinyl content. The vinyl content of the polybutadiene can be increased up to 90 % by addition of small amounts of polar substances such as ethers. [Pg.307]


See other pages where Rubber hydrocarbon content is mentioned: [Pg.16]    [Pg.611]    [Pg.612]    [Pg.2258]    [Pg.37]    [Pg.16]    [Pg.611]    [Pg.612]    [Pg.2258]    [Pg.37]    [Pg.356]    [Pg.164]    [Pg.73]    [Pg.188]    [Pg.20]    [Pg.69]    [Pg.294]    [Pg.860]    [Pg.491]    [Pg.322]    [Pg.664]    [Pg.9]    [Pg.142]    [Pg.306]    [Pg.320]    [Pg.182]    [Pg.23]    [Pg.195]    [Pg.1158]    [Pg.294]    [Pg.261]    [Pg.467]    [Pg.470]    [Pg.492]    [Pg.31]    [Pg.353]    [Pg.355]    [Pg.2806]   


SEARCH



Rubber content

Rubber hydrocarbon

© 2024 chempedia.info