Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ribosomes stabilization

Important products derived from amino acids include heme, purines, pyrimidines, hormones, neurotransmitters, and biologically active peptides. In addition, many proteins contain amino acids that have been modified for a specific function such as binding calcium or as intermediates that serve to stabilize proteins—generally structural proteins—by subsequent covalent cross-hnk-ing. The amino acid residues in those proteins serve as precursors for these modified residues. Small peptides or peptide-like molecules not synthesized on ribosomes fulfill specific functions in cells. Histamine plays a central role in many allergic reactions. Neurotransmitters derived from amino acids include y-aminobutyrate, 5-hydroxytryptamine (serotonin), dopamine, norepinephrine, and epinephrine. Many drugs used to treat neurologic and psychiatric conditions affect the metabolism of these neurotransmitters. [Pg.264]

The first step in this process involves the binding of GTP by eIF-2. This binary complex then binds to met-tRNAf a tRNA specifically involved in binding to the initiation codon AUG. (There are two tRNAs for methionine. One specifies methionine for the initiator codon, the other for internal methionines. Each has a unique nucleotide sequence.) This ternary complex binds to the 40S ribosomal subunit to form the 43S preinitiation complex, which is stabilized by association with eIF-3 and elF-lA. [Pg.365]

Stability of several enzymes like proteases from thermophilic micro-organisms can be increased in aqueous-organic biphasic systems. Owusu and Cowan [67] observed a strong positive correlation between bacterial growth temperature, the thermostability of free protein extracts, and enzyme stability in aqueous-organic biphasic systems (Table 1). Enzymes, like other cell components (membranes, DNA, (RNA ribosomes), are adapted to withstand the environmental conditions under which the organism demonstrates optimal growth. [Pg.560]

Figure 7.4 (a) IREs in eukaryotic mRNAs the secondary structures of ferritin and transferrin receptor IREs. (b) The IRE localization in mRNAs the translation/ribosome binding element in the 5 -UTR of ferritin mRNA is above, that of the stability/ turnover element in the 3 -UTR of transferrin receptor mRNA is below. Adapted from Theil, 1998, by courtesy of Marcel Dekker, Inc. [Pg.217]

Many polypeptides undergo covalent modification after (or sometimes during) their ribosomal assembly. The most commonly observed such PTMs are listed in Table 2.7. Such modifications generally influence either the biological activity or the structural stability of the polypeptide. The majority of therapeutic proteins bear some form of PTM. Although glycosylation represents the most common such modification, additional PTMs important in a biopharmaceutical context include carboxylation, hydroxylation, sulfation and amidation these PTMs are now considered further. [Pg.29]

The Xenopus transcription factor IIIA not only acts as an essential RNA polymerase transcription factor for the expression of the 5S rRNA gene, it also binds to the 5S rRNA to form a 7S ribonucleoprotein particle that stabilizes the RNA until it is required for ribosome assembly and facilitates nuclear export of the 5S rRNA. Indeed, it was originally shown to be the protein component associated with 5S rRNA in the 7S particle in Xenopus oocytes before it was recognized as a transcription factor. How, we may ask, can this protein not only recognize specific DNA sequences in the 5S rRNA gene upstream region, but also recognize different, but equally specific, sequences in 5S rRNA ... [Pg.209]

Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123 49-63 Tawfic S, Goueli SA, Olson MO, Ahmed K (1994) Androgenic regulation of phosphorylation and stability of nucleolar protein nucleolin in rat ventral prostate. Prostate 24 101-106. [Pg.143]


See other pages where Ribosomes stabilization is mentioned: [Pg.214]    [Pg.1047]    [Pg.321]    [Pg.402]    [Pg.124]    [Pg.1047]    [Pg.7214]    [Pg.118]    [Pg.214]    [Pg.1047]    [Pg.321]    [Pg.402]    [Pg.124]    [Pg.1047]    [Pg.7214]    [Pg.118]    [Pg.199]    [Pg.205]    [Pg.207]    [Pg.116]    [Pg.1086]    [Pg.246]    [Pg.29]    [Pg.394]    [Pg.250]    [Pg.215]    [Pg.54]    [Pg.97]    [Pg.99]    [Pg.112]    [Pg.323]    [Pg.70]    [Pg.68]    [Pg.447]    [Pg.635]    [Pg.161]    [Pg.452]    [Pg.594]    [Pg.81]    [Pg.82]    [Pg.55]    [Pg.107]    [Pg.274]    [Pg.274]    [Pg.2]    [Pg.359]    [Pg.364]    [Pg.364]    [Pg.365]   


SEARCH



Ribosomes stability

© 2024 chempedia.info