Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ribonucleic acid codons

When the cell requires instructions for protein production, part of the code on DNA, starting at an initiator and ending at a stop codon, is converted into a more mobile form by transferring the DNA code into a matching RNA code on a messenger ribonucleic acid (mRNA), a process known as transcription. The decoding, or translation, of mRNA then takes place by special transfer ribonucleic acids (tRNA), which recognize individual codons as amino acids. The sequence of amino acids is assembled into a protein (see Proteins section). In summary, the codes on DNA... [Pg.327]

Cellular protein biosynthesis involves the following steps. One strand of double-stranded DNA serves as a template strand for the synthesis of a complementary single-stranded messenger ribonucleic acid (mRNA) in a process called transcription. This mRNA in turn serves as a template to direct the synthesis of the protein in a process called translation. The codons of the mRNA are read sequentially by transfer RNA (tRNA) molecules, which bind specifically to the mRNA via triplets of nucleotides that are complementary to the particular codon, called an anticodon. Protein synthesis occurs on a ribosome, a complex consisting of more than 50 different proteins and several stmctural RNA molecules, which moves along the mRNA and mediates the binding of the tRNA molecules and the formation of the nascent peptide chain. The tRNA molecule carries an activated form of the specific amino acid to the ribosome where it is added to the end of the growing peptide chain. There is at least one tRNA for each amino acid. [Pg.197]

Ribosomal synthesis of peptides proceeds through translation of messenger ribonucleic acid (mRNA) and utilizes the 20 primary L-a-amino acids. These amino acids are incorporated with the use of specific transfer ribonucleic acid (tRNA) codons. The 20 primary a-amino acids, with the exception of glycine that is achiral, are characterized by an L-configuration at the a-position (Figure 1). In general, most proteins are found to be composed of these 20 L-a-amino acids, as such they are referred to as protein amino acids. [Pg.5]

The ribosome is the enzyme that catalyzes peptide bond formation. The bacterial ribosome is a large 2500 kDa ribonucleic acid/protein complex comprised of a large subunit (LSU or SOS subunit) and a small subunit (SSU or 30S subunit) (Fig. 4.1). The small ribosomal subunit binds to messenger RNA (mRNA) and reads the genetic code by aligning its base triplet codons with anticodons of transfer RNA molecules (tRNA). The large ribosomal subunit binds to opposite ends of tRNA molecules and catalyzes peptide bond formation. [Pg.99]

The synthesis of a protein requires the mRNA as a template containing the full sequence of codons, including the codon to terminate synthesis. The ribosomes, which orchestrate protein synthesis, read the mRNA in the 5 —>3 direction. (The 5 end has a phosphate group on the 5 -carbon atom of a ribose moiety whereas the 3 end has a phospate group on the 3 -carbon atom of ribose). Protein biosynthesis requires a transfer ribonucleic acid (tRNA) to convey an amino acid to the growing peptide chain. tRNAs are specific for each codon and contain 60-95 nucleotides, a few of which have unusual structures. The 3 end of the tRNA has the sequence... [Pg.176]

When the growing peptide chain approaches the carboxylic acid end (at the stop codon on mRNA), protein termination factors help to disassemble the ribosome and release the completed protein chain. Protein translation is intermpted by antibiotics such as tetracycline or chloramphenicol that interfere with protein synthesis, see also Codon Proteins Protein Synthesis Ribonucleic Acid. [Pg.1069]

Ribonucleic acid (RNA) The chains of nucleotides, arranged in codons, that govern protein biosynthesis. [Pg.262]

Before aligning the amino aeids along the messenger ribonucleic acid (mRNA) template, the amino acid (AA) is activated by reaction to form AMP-AA and transferred to a small nucleic acid called tRNA, transfer ribonucleic acid, that is tRNA-AA, which contains the triplet codon for base pairing along the mRNA sequence. This two-step reaction is shown as Equations (4.3 a) and (4.3T)) below. [Pg.98]

The information which specifies the amino-acid sequence of a protein is stored in the nucleotide sequence of the double helix of deoxyribonucleic acid (DNA). The transcription of sections of this information into ribonucleic acid (RNA) is catalysed by RNA polymerases. These enzymes not only control the synthesis of RNA but also recognize stop and start signals on the DNA. The start signals are complex and may be blocked by repressor molecules which inhibit the transcription process. Once synthesized, the (messenger) RNA is processed and exported to ribosomes where its nucleotide sequence is translated into protein. Triplets of three nucleotides (codons) in the messenger RNA each specify (encode) one amino acid. The linear sequence of nucleotides in the messenger RNA thus specifies the sequence of amino acids in the protein whose primary structure will therefore correspond directly to the sequence of nucleotides in the DNA. [Pg.320]


See other pages where Ribonucleic acid codons is mentioned: [Pg.4]    [Pg.46]    [Pg.72]    [Pg.39]    [Pg.264]    [Pg.67]    [Pg.210]    [Pg.917]    [Pg.124]    [Pg.234]    [Pg.125]    [Pg.266]    [Pg.51]    [Pg.1305]    [Pg.238]    [Pg.205]    [Pg.251]    [Pg.579]    [Pg.232]    [Pg.259]    [Pg.1059]    [Pg.695]    [Pg.1147]    [Pg.14]    [Pg.11]    [Pg.42]    [Pg.543]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Codon

© 2024 chempedia.info