Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium, selectivity

With rhodium, selectivity decreases in the following order ... [Pg.20]

Figure 8.5. Proposed structure of the 3 2 diphosphine rhodium selective catalyst species. Figure 8.5. Proposed structure of the 3 2 diphosphine rhodium selective catalyst species.
The addition to a sterically hindaed enone is shown in Scheme 3. The reaction is very slow with neutral complexes, but a phosphine-free cationic rhodium selectively gives a P-addition product. [Pg.97]

In 1968 a new methanol carbonylation process using rhodium promoted with iodide as catalyst was introduced by a modest letter (35). This catalyst possessed remarkable activity and selectivity for conversion to acetic acid. Nearly quantitative yields based on methanol were obtained at atmospheric pressure and a plant was built and operated in 1970 at Texas City, Tex. The effect on the world market has been exceptional (36). [Pg.67]

Often the aldehyde is hydrogenated to the corresponding alcohol. In general, addition of carbon monoxide to a substrate is referred to as carbonylation, but when the substrate is an olefin it is also known as hydroformylation. The eady work on the 0x0 synthesis was done with cobalt hydrocarbonyl complexes, but in 1976 a low pressure rhodium-cataly2ed process was commerciali2ed that gave greater selectivity to linear aldehydes and fewer coproducts. [Pg.166]

Other Methods. A variety of other methods have been studied, including phenol hydroxylation by N2O with HZSM-5 as catalyst (69), selective access to resorcinol from 5-methyloxohexanoate in the presence of Pd/C (70), cyclotrimerization of carbon monoxide and ethylene to form hydroquinone in the presence of rhodium catalysts (71), the electrochemical oxidation of benzene to hydroquinone and -benzoquinone (72), the air oxidation of phenol to catechol in the presence of a stoichiometric CuCl and Cu(0) catalyst (73), and the isomerization of dihydroxybenzenes on HZSM-5 catalysts (74). [Pg.489]

Finally, selective hydrogenation of the olefinic bond in mesityl oxide is conducted over a fixed-bed catalyst in either the Hquid or vapor phase. In the hquid phase the reaction takes place at 150°C and 0.69 MPa, in the vapor phase the reaction can be conducted at atmospheric pressure and temperatures of 150—170°C. The reaction is highly exothermic and yields 8.37 kJ/mol (65). To prevent temperature mnaways and obtain high selectivity, the conversion per pass is limited in the Hquid phase, and in the vapor phase inert gases often are used to dilute the reactants. The catalysts employed in both vapor- and Hquid-phase processes include nickel (66—76), palladium (77—79), copper (80,81), and rhodium hydride complexes (82). Complete conversion of mesityl oxide can be obtained at selectivities of 95—98%. [Pg.491]

Other Rhodium Processes. Unmodified rhodium catalysts, eg, 1 14(00)22 [19584-30-6] have high hydroformylation activity but low selectivity to normal aldehydes. [Pg.469]

Catalytic asymmetric hydrogenation was one of the first enantioselective synthetic methods used industrially (82). 2,2 -Bis(diarylphosphino)-l,l -binaphthyl (BINAP) is a chiral ligand which possesses a Cg plane of symmetry (Fig. 9). Steric interactions prevent interconversion of the (R)- and (3)-BINAP. Coordination of BINAP with a transition metal such as mthenium or rhodium produces a chiral hydrogenation catalyst capable of inducing a high degree of enantiofacial selectivity (83). Naproxen (41) is produced in 97% ee by... [Pg.248]

Homogeneous rhodium-catalyzed hydroformylation (135,136) of propene to -butyraldehyde (qv) was commercialized in 1976. -Butyraldehyde is a key intermediate in the synthesis of 2-ethyIhexanol, an important plasticizer alcohol. Hydroformylation is carried out at <2 MPa (<290 psi) at 100°C. A large excess of triphenyl phosphine contributes to catalyst life and high selectivity for -butyraldehyde (>10 1) yielding few side products (137). Normally, product separation from the catalyst [Rh(P(C2H2)3)3(CO)H] [17185-29-4] is achieved by distillation. [Pg.180]

Secondary and tertiary amines are preferentially produced when rhodium or palladium are chosen as catalyst. As in Method 3, reforming reactions do not normally compete with the hydrogenation reaction and high selectivities to the desired product are possible. [Pg.200]

Conditions cited for Rh on alumina hydrogenation of MDA are much less severe, 117 °C and 760 kPA (110 psi) (26). With 550 kPa (80 psi) ammonia partial pressure present ia the hydrogenation of twice-distilled MDA employing 2-propanol solvent at 121°C and 1.3 MPa (190 psi) total pressure, the supported Rh catalyst could be extensively reused (27). Medium pressure (3.9 MPa = 566 psi) and temperature (80°C) hydrogenation usiag iridium yields low trans trans isomer MDCHA (28). Improved selectivity to aUcychc diamine from MDA has been claimed (29) for alumina-supported iridium and rhodium by iatroduciag the tertiary amines l,4-diazabicyclo[2.2.2]octane [280-57-9] and quiaucHdine [100-76-5]. [Pg.209]

Direct production of select MDCHA isomer mixtures has been accompHshed usiag mthenium dioxide (30), mthenium oa alumiaa (31), alkah-moderated mthenium (32) and rhodium (33). Specific isomer mixtures are commercially available from an improved 5—7 MPa (700—1000 psi) medium pressure process tolerant of oligomer-containing MDA feeds (34). Dimethylenetri(cyclohexylamine) (8) [25131 -42-4] is a coproduct. [Pg.209]

Conventional triorganophosphite ligands, such as triphenylphosphite, form highly active hydroformylation catalysts (95—99) however, they suffer from poor durabiUty because of decomposition. Diorganophosphite-modified rhodium catalysts (94,100,101), have overcome this stabiUty deficiency and provide a low pressure, rhodium catalyzed process for the hydroformylation of low reactivity olefins, thus making lower cost amyl alcohols from butenes readily accessible. The new diorganophosphite-modified rhodium catalysts increase hydroformylation rates by more than 100 times and provide selectivities not available with standard phosphine catalysts. For example, hydroformylation of 2-butene with l,l -biphenyl-2,2 -diyl... [Pg.374]

The hydroformylation reaction is carried out in the Hquid phase using a metal carbonyl catalyst such as HCo(CO)4 (36), HCo(CO)2[P( -C4H2)] (37), or HRh(CO)2[P(CgH3)2]2 (38,39). The phosphine-substituted rhodium compound is the catalyst of choice for new commercial plants that can operate at 353—383 K and 0.7—2 MPa (7—20 atm) (39). The differences among the catalysts are found in their intrinsic activity, their selectivity to straight-chain product, their abiHty to isomerize the olefin feedstock and hydrogenate the product aldehyde to alcohol, and the ease with which they are separated from the reaction medium (36). [Pg.51]

Acetic acid from methanol by the Monsanto process, CH3OH -1-CO CH3COOH, rhodium iodide catalyst, 3 atm (44 psi), 150°C (302°F), 99 percent selectivity of methanol. [Pg.2092]

The dimethyl ketal function (51) is one of the most suitable base stable protecting groups for saturated 5a- and 5/i-3-ketones. It is formed by reaction of the ketone (50) with methanol in the presence of a suitable catalyst. Good selectivity can also be achieved with this group since 2-, 6-, 11-, 12-, 17- and 20-ketones do not form dimethyl ketals under these conditions. The 2-ketone is converted in part to the dimethyl ketal in the presence of homogeneous rhodium catalyst. "" y -Toluenesulfonic acid is the catalyst of... [Pg.388]

The pentamethylcyclopentadienyl derivatives of rhodium Cp RhL (L = PMe3, C2H4) oxidatively add thiophene preferentially via the C—S activation route compared to that based on the C—H activation [880M1171,94JOM(472)311]. The Tp derivatives by contrast yield mainly the latter. Tp Rh(PEt3) acts almost selectively and forms exclusively 225 (R = Et), whereas Tp Rh(PMc3) forms a major amount of 225 (R = Me) and minor amount of 226 (960M2678). [Pg.36]

Whereas the utility of these methods has been amply documented, they are limited in the structures they can provide because of their dependence on the diazoacetate functionality and its unique chemical properties. Transfer of a simple, unsubstituted methylene would allow access to a more general subset of chiral cyclopropanes. However, attempts to utilize simple diazo compounds, such as diazomethane, have never approached the high selectivities observed with the related diazoacetates (Scheme 3.2) [4]. Traditional strategies involving rhodium [3a,c], copper [ 3b, 5] and palladium have yet to provide a solution to this synthetic problem. The most promising results to date involve the use of zinc carbenoids albeit with selectivities less than those obtained using the diazoacetates. [Pg.86]

Selective reduction of conjugated diolefins, such as 1,3-peniadiene, falls with metal in the sequence palladium > rhodium > ruthenium > platinum... [Pg.37]

Both amine oxides related to pyridines and aliphatic amine oxides (/25) are easily reduced, the former the more so. Pyridine N-oxide has been reduced over palladium, platinum, rhodium, and ruthenium. The most active was rhodium, but it was nonselective, reducing the ring as well. Palladium is usually the preferred catalyst for this type of reduction and is used by most workers 16,23,84 158) platinum is also effective 100,166,169). Katritzky and Monrol - ) examined carefully the selectivity of reduction over palladium of a... [Pg.171]


See other pages where Rhodium, selectivity is mentioned: [Pg.263]    [Pg.263]    [Pg.112]    [Pg.68]    [Pg.77]    [Pg.129]    [Pg.43]    [Pg.465]    [Pg.469]    [Pg.173]    [Pg.176]    [Pg.73]    [Pg.200]    [Pg.208]    [Pg.259]    [Pg.118]    [Pg.522]    [Pg.167]    [Pg.171]    [Pg.30]    [Pg.13]    [Pg.14]    [Pg.69]    [Pg.187]    [Pg.37]    [Pg.37]    [Pg.118]    [Pg.119]    [Pg.133]    [Pg.135]   
See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Platinum-rhodium selectivity

Rhodium complex-catalyzed carbonylation selectivity

Rhodium selective

Rhodium, selectivity substituted aromatics

Rhodium, selectivity substituted benzenes

Rhodium-acyl intermediates, selective

Rhodium-ruthenium catalysts product selectivity

Selectivity rhodium catalysts

© 2024 chempedia.info