Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalysts selectivity

Other Methods. A variety of other methods have been studied, including phenol hydroxylation by N2O with HZSM-5 as catalyst (69), selective access to resorcinol from 5-methyloxohexanoate in the presence of Pd/C (70), cyclotrimerization of carbon monoxide and ethylene to form hydroquinone in the presence of rhodium catalysts (71), the electrochemical oxidation of benzene to hydroquinone and -benzoquinone (72), the air oxidation of phenol to catechol in the presence of a stoichiometric CuCl and Cu(0) catalyst (73), and the isomerization of dihydroxybenzenes on HZSM-5 catalysts (74). [Pg.489]

Other Rhodium Processes. Unmodified rhodium catalysts, eg, 1 14(00)22 [19584-30-6] have high hydroformylation activity but low selectivity to normal aldehydes. [Pg.469]

Conventional triorganophosphite ligands, such as triphenylphosphite, form highly active hydroformylation catalysts (95—99) however, they suffer from poor durabiUty because of decomposition. Diorganophosphite-modified rhodium catalysts (94,100,101), have overcome this stabiUty deficiency and provide a low pressure, rhodium catalyzed process for the hydroformylation of low reactivity olefins, thus making lower cost amyl alcohols from butenes readily accessible. The new diorganophosphite-modified rhodium catalysts increase hydroformylation rates by more than 100 times and provide selectivities not available with standard phosphine catalysts. For example, hydroformylation of 2-butene with l,l -biphenyl-2,2 -diyl... [Pg.374]

The dimethyl ketal function (51) is one of the most suitable base stable protecting groups for saturated 5a- and 5/i-3-ketones. It is formed by reaction of the ketone (50) with methanol in the presence of a suitable catalyst. Good selectivity can also be achieved with this group since 2-, 6-, 11-, 12-, 17- and 20-ketones do not form dimethyl ketals under these conditions. The 2-ketone is converted in part to the dimethyl ketal in the presence of homogeneous rhodium catalyst. "" y -Toluenesulfonic acid is the catalyst of... [Pg.388]

GP 8[ [R 7] Rhodium catalysts generally show no pronoimced activation phase as given for other catalysts in other reactions [3]. In the first 4 h of operation, methane conversion and hydrogen selectivity increases by only a few percent. After this short and non-pronounced formation phase, no significant changes in activity were determined in the experimental runs for more than 200 h. [Pg.323]

GP 8] [R 7] Given constant catalyst temperature and GHSV, methane conversion and CO and H2 selectivity decrease with increasing pressure at total oxygen consumption for a rhodium catalyst [CH4/O2 2.0 1-12 MPa 1.17 10 h (STP) 1200 °C] [3]. The decrease is larger than thermodynamically expected. [Pg.325]

The differences in the steric effect between catecholborane and pinacolborane, and the valence effect between a cationic or neutral rhodium complex reverse the re-gioselechvity for fluoroalkenes (Scheme 1-4) [26]. The reaction affords one of two possible isomers with excellent regioselectivity by selecting borane and the catalyst appropriately, whereas the uncatalyzed reaction of 9-BBN or SiaiBH failed to yield the hydroboration products because of the low nucleophilicity of fluoroalkenes. The regiochemical preference is consistent with the selectivity that is observed in the hydroboration of styrene. Thus, the internal products are selectively obtained when using a cationic rhodium and small catecholborane while bulky pinacolborane yields terminal products in the presence of a neutral rhodium catalyst. [Pg.6]

As expected initial examination of the hydrogenation of this substrate revealed its relatively low activity compared to dehydroamino acids that provide 3-aryl-a-amino acids. By carrying out the hydrogenation at an elevated temperature, however, the inherent low activity could be overcome. A screen of the Dowpharma catalyst collection at S/C 100 revealed that several rhodium catalysts provided good conversion and enantioselectivity while low activity and selectivity was observed with several ruthenium and iridium catalysts. Examination of rate data identified [(l )-PhanePhos Rh (COD)]Bp4 as the most active catalyst with a rate approximately... [Pg.73]

In order to improve the selectivity toward the formation of 1,3-PDO, we studied the influence of metal salt additives. While the addition of calcium or copper salts exhibited a moderate influence, the presence of iron salts played a significant role on the rate and selectivity of the reaction (Figure 35.1). The metal additives reduced noticeably the activity of the rhodium catalysts suggesting that they acted as a surface poison, but they modified the selectivity of the glycerol hydrogenolysis, probably through selective diol chelation. [Pg.315]

Certain sterically hindered rhodium catalysts also lead to improved selectivity. For... [Pg.937]

Subsequently, cationic rhodium catalysts are also found to be effective for the regio- and stereoselective hydrosilation of alkynes in aqueous media. Recently, Oshima et al. reported a rhodium-catalyzed hydrosilylation of alkynes in an aqueous micellar system. A combination of [RhCl(nbd)]2 and bis-(diphenylphosphi no)propanc (dppp) were shown to be effective for the ( >selective hydrosilation in the presence of sodium dodecylsulfate (SDS), an anionic surfactant, in water.86 An anionic surfactant is essential for this ( )-selective hydrosilation, possibly because anionic micelles are helpful for the formation of a cationic rhodium species via dissociation of the Rh-Cl bond. For example, Triton X-100, a neutral surfactant, gave nonstereoselective hydrosilation whereas methyltrioctylammonium chloride, a cationic surfactant, resulted in none of the hydrosilation products. It was also found that the selectivity can be switched from E to Z in the presence of sodium iodide (Eq. 4.47). [Pg.122]

The oxidation is carried out over layers of platinum-rhodium catalyst and the reaction conditions are selected to favour reaction 1. Yields for the oxidation step are reported to... [Pg.151]

In 1968 Wilkinson discovered that phosphine-modified rhodium complexes display a significantly higher activity and chemoselectivity compared to the first generation cobalt catalyst [29]. Since this time ligand modification of the rhodium catalyst system has been the method of choice in order to influence catalyst activity and selectivity [10]. [Pg.148]

Complex 7-AI2O3/PTA/ (/< ./< )-(Mc-DuPHOS)Rh(COD) 1 (1) was prepared and tested in the hydrogenation of the prochiral substrate methyl-2-acetamidoacrylate (MAA). After full conversion, the products were separated from the catalyst and analyzed for Rh and W content and product selectivity. The catalyst was re-used three times. Analytical results show no rhodium leaching is observed. Complex 1 maintains its activity and selectivity in each successive run. The first three runs show tungsten (W) leaching but after that no more W is detectable. The leached W comes from the excess of PTA on alumina. The selectivity of both tethered and non-tethered forms gave the product in 94% ee. [Pg.120]

The rhodium catalyst has several distinct advantages over the cobalt catalyst it is much faster and far more selective. The higher rate is in process terms translated into much lower pressures (the cobalt catalyst is operated at pressures of 700 bar). Nickel- and palladium-based catalysts have also been reported, but no applications have resulted from these. The mechanism for group 10 metals has not been studied (see Section 9.3.2.3). [Pg.142]


See other pages where Rhodium catalysts selectivity is mentioned: [Pg.230]    [Pg.263]    [Pg.391]    [Pg.669]    [Pg.606]    [Pg.607]    [Pg.739]    [Pg.501]    [Pg.230]    [Pg.263]    [Pg.391]    [Pg.669]    [Pg.606]    [Pg.607]    [Pg.739]    [Pg.501]    [Pg.465]    [Pg.208]    [Pg.14]    [Pg.69]    [Pg.164]    [Pg.1037]    [Pg.115]    [Pg.106]    [Pg.324]    [Pg.325]    [Pg.325]    [Pg.325]    [Pg.326]    [Pg.326]    [Pg.407]    [Pg.32]    [Pg.5]    [Pg.249]    [Pg.388]    [Pg.924]    [Pg.1337]    [Pg.55]    [Pg.132]    [Pg.95]    [Pg.149]    [Pg.459]    [Pg.107]    [Pg.143]   
See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.350 , Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.361 , Pg.362 , Pg.363 ]




SEARCH



Catalyst selection

Catalyst selectivity

Rhodium catalysts catalyst

Rhodium, selectivity

Selective catalysts

© 2024 chempedia.info