Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium diastereoselectivity

In addition, this methodology was extended to the cyclopropanation of a series of alkenes with phenyldiazomethane, giving rise to the corresponding cyclopropanes with high yields, diastereo- and enantioselectivities, as shown in Scheme 6.9. It was shown that the diastereoselectivity of these reactions was not greatly altered by the type of rhodium carboxylate catalyst that was used. [Pg.215]

McKervey and Ye have developed chiral sulfur-containing dirhodium car-boxylates that have been subsequently employed as catalysts for asymmetric intramolecular C-H insertion reactions of y-alkoxy-ot-diazo-p-keto esters. These reactions produced the corresponding ci -2,5-disubstituted-3(2H)-furanones with diastereoselectivities of up to 47% de. Moreover, when a chiral y-alkoxy-a-diazo-p-keto ester containing the menthyl group as a chiral auxiliary was combined with rhodium(II) benzenesulfoneprolinate catalyst, a considerable diastereoselectivity enhancement was achieved with the de value being more than 60% (Scheme 10.74). [Pg.352]

As another extension of this process, Davies et al. have developed highly regio-, diastereo- and enantioselective C-H insertions of methyl aryldiazoace-tates into cyclic A-Boc-protected amines catalysed by rhodium(II) S)-N- p-dodecylphenyl)sulfonylprolinate. The best results were obtained in the case of the C-H insertion of methyl aryldiazoacetates into A-Boc-pyrrolidine, which gave, in all cases, a diastereoselectivity and an enantioselectivity greater than 90% de and 90% ee respectively (Scheme 10.77). The synthetic utility of this method was demonstrated by means of a two-step asymmetric synthesis of a novel class of C2-symmetric amines. [Pg.355]

Prior literature indicated that olefins substituted with chiral sulfoxides could indeed be reduced by hydride or hydrogen with modest stereoselectivity, as summarized in Scheme 5.10. Ogura et al. reported that borane reduction of the unsaturated sulfoxide 42 gave product 43 in 87 13 diastereomer ratio and D20 quench of the borane reduction mixture gave the product 43 deuterated at the a-position to the sulfoxide, consistent with the hydroboration mechanism [10a]. In another paper, Price et al. reported diastereoselective hydrogenation of gem-disubstituted olefin rac-44 to 45 with excellent diastereoselectivity using a rhodium catalyst [10b],... [Pg.152]

The Davies group has described several examples of a rhodium-catalyzed decomposition of a diazo-compound followed by a [2+1] cycloaddition to give divinyl cyclopropanes, which then can undergo a Cope rearrangement. Reaction of the pyrrol derivative 6/2-51 and the diazo compound 6/2-52 led to the tropane nucleus 6/2-54 via the cyclopropane derivative 6/2-53 (Scheme 6/2.11) [201]. Using (S)-lactate and (R)-pari lolaclorie as chiral auxiliaries at the diazo compound, a diastereoselectivity of around 90 10 could be achieved in both cases. [Pg.429]

Boehm et al.100 have synthesised and studied a series of half-sandwich rhodium (III) and iridium (III) complexes, derivatives of salicylaldehyde and L-amino acid esters. The diastereoselectivity has shown strong dependence on the type of metal as well as amino acid residue. The labile configuration of the metal atoms was suggested because of changes in the diastereomers ratio with increasing temperature. Fast epimerisation at the metal atom was suggested for some S-phenylalanine complexes. [Pg.168]

Intermolecular cyclopropanation of olefins poses two stereochemical problems enantioface selection and diastereoselection (trans-cis selection). In general, for stereochemical reasons, the formation of /ra ,v-cyclopropane is kinetically more favored than that of cis-cyclopropane, and the asymmetric cyclopropanation so far developed is mostly /ram-selective, except for a few examples. Copper, rhodium, ruthenium, and cobalt complexes have mainly been used as the catalysts for asymmetric intermolecular cyclopropanation. [Pg.243]

Cyclization of 87 in the presence of a chiral rhodium catalyst gave good diastereoselectivity and allowed the required 3-oxacepham 88 to be isolated <00H(52)875>. The stereoselectivity obtained in three approaches to 1-oxacephams have been compared <00T5553>. [Pg.81]

Diastereoselective syntheses of dihydrobenzo[f>]furans have been accomplished by a rhodium-catalyzed regioselective and enantiospecific intermolecular allylic etherification of o-iodophenols as a key step, providing the corresponding aryl ally ether 122, which leads to a dihydrobenzo[b]furan by treatment of the intermediate aryl iodide with tris(trimethylsilyl)silane and triethylborane at room temperature in the presence of air <00JA5012>. [Pg.160]

The reaction of aryldiazoacetates with cyclohexene is a good example of the influence of steric effects on the chemistry of the donor/acceptor-substituted rhodium carbenoids. The Rh2(reaction with cyclohexene resulted in the formation of a mixture of the cyclopropane and the G-H insertion products. The enantios-electivity of the C-H insertion was high but the diastereoselectivity was very low (Equation (31)). 0 In contrast, the introduction of a silyl group on the cyclohexene, as in 15, totally blocked the cyclopropanation, and, furthermore, added sufficient size differentiation between the two substituents at the methylene site to make the reaction to form 16 proceed with high diastereoselectivity (Equation (32)).90 The allylic C-H insertion is applicable to a wide array of cyclic and acyclic substrates, and even systems capable of achieving high levels of kinetic resolution are known.90... [Pg.177]

Having established that pure enantiomer ( S,ZR)-77 was capable of undergoing remarkably regioselective and diastereoselective C-H activation, it followed that highly efficient enantiomeric differentiation of rac-77 could be accomplished.199 Hence, the Rh2(5Y-MEPY)4-catalyzed reaction of rac-77 effectively gave close to a 1 1 mixture of enantioenriched (lY)-78 (91% ee) and ( R)-79 (98% ee) (Equation (68)). Other equally spectacular examples of diastereo- and regiocontrol via chiral rhodium carboxamide catalysts in cyclic and acyclic diazoacetate systems have been reported.152 199 200 203-205... [Pg.191]

Krische and co-workers have revealed efficient reductive generation of rhodium enolates under hydrogenation conditions.403 40311-403 Both inter- and intramolecular reductive aldol reactions proceed smoothly and stereoselec-tively, although intermolecular reactions generally show low diastereoselectivity (Equations (52) and (53)). [Pg.452]

Rhodium complexes catalyze 1,2-addition of main group metal compounds to aldimines as well. Table 5 summarizes the reported methods. Electron-withdrawing substituents such as sulfonyl and acyl groups on the imino nitrogen atom are important to obtain sufficiently high reactivity. Asymmetric synthesis (diastereoselective and enantioselective) has also been accomplished. [Pg.453]

In comparison with the platinum catalysts, rhodium catalysts are much more reactive to effect addition of bis(catecholato)diboron even to non-strained internal alkenes under mild reaction conditions (Equation (5)).53-55 This higher reactivity prompted trials on the asymmetric diboration of alkenes. Diastereoselective addition of optically active diboron derived from (li ,2i )-diphenylethanediol for />-methoxystyrene gives 60% de (Equation (6)).50 Furthermore, enantioselective diboration of alkenes with bis(catecolato)diboron has been achieved by using Rh(nbd)(acac)/(A)-QUINAP catalyst (Equation (7)).55,56 The reaction of internal (A)-alkenes with / //-butylethylene derivatives gives high enantioselectivities (up to 98% ee), whereas lower ee s are obtained in the reaction of internal (Z)-alkenes, styrene, and a-methylstyrene. [Pg.729]

The enantioselective hydrogenation of prochirai heteroaromatics is of major relevance for the synthesis of biologically active compounds, some of which are difficult to access via stereoselective organic synthesis [4], This is the case for substituted N-heterocycles such as piperazines, pyridines, indoles, and quinoxa-lines. The hydrogenation of these substrates by supported metal particles generally leads to diastereoselective products [4], while molecular catalysts turn out to be more efficient in enantioselective processes. Rhodium and chiral chelating diphosphines constitute the ingredients of the vast majority of the known molecular catalysts. [Pg.481]

In these reactions, the major diastereomer is formed by the addition of hydrogen syn to the hydroxyl group in the substrate. The cationic iridium catalyst [Ir(PCy3)(py)(nbd)]+ is very effective in hydroxy-directive hydrogenation of cyclic alcohols to afford high diastereoselectivity, even in the case of bishomoallyl alcohols (Table 21.4, entries 10-13) [5, 34, 35]. An intermediary dihydride species is not observed in the case of rhodium complexes, but iridium dihydride species are observed and the interaction of the hydroxyl unit of an unsaturated alcohol with iridium is detected spectrometrically through the presence of diastereotopic hydrides using NMR spectroscopy [21]. [Pg.639]

Other functional groups which have a heteroatom rather than a hydroxyl group capable of directing the hydrogenation include alkoxyl, alkoxycarbonyl, carboxylate, amide, carbamate, and sulfoxide. The alkoxy unit efficiently coordinates to cationic iridium or rhodium complexes, and high diastereoselectivity is induced in the reactions of cyclic substrates (Table 21.3, entries 11-13) [25, 28]. An acetal affords much lower selectivity than the corresponding unsaturated ketone (Table 21.3, entries 14 and 15) [25]. [Pg.650]

In the case of cyclopentenyl carbamate in which a directive group is present at the homoallyl position, the cationic rhodium [Rh(diphos-4)]+ or iridium [Ir(PCy3)(py)(nbd)]+ catalyst cannot interact with the carbamate carbonyl, and thus approaches the double bond from the less-hindered side. This affords a cis-product preferentially, whereas with the chiral rhodium-duphos catalyst, directivity of the carbamate unit is observed (Table 21.7, entry 7). The presence of a hydroxyl group at the allyl position induced hydroxy-directive hydrogenation, and higher diastereoselectivity was obtained (entry 8) [44]. [Pg.653]

In the case of tri-substituted alkenes, the 1,3-syn products are formed in moderate to high diastereoselectivities (Table 21.10, entries 6—12). The stereochemistry of hydrogenation of homoallylic alcohols with a trisubstituted olefin unit is governed by the stereochemistry of the homoallylic hydroxy group, the stereogenic center at the allyl position, and the geometry of the double bond (Scheme 21.4). In entries 8 to 10 of Table 21.10, the product of 1,3-syn structure is formed in more than 90% d.e. with a cationic rhodium catalyst. The stereochemistry of the products in entries 10 to 12 shows that it is the stereogenic center at the allylic position which dictates the sense of asymmetric induction... [Pg.660]


See other pages where Rhodium diastereoselectivity is mentioned: [Pg.311]    [Pg.31]    [Pg.207]    [Pg.283]    [Pg.18]    [Pg.19]    [Pg.87]    [Pg.24]    [Pg.264]    [Pg.95]    [Pg.96]    [Pg.99]    [Pg.153]    [Pg.163]    [Pg.429]    [Pg.1122]    [Pg.245]    [Pg.82]    [Pg.164]    [Pg.192]    [Pg.194]    [Pg.634]    [Pg.815]    [Pg.832]    [Pg.631]    [Pg.638]    [Pg.638]    [Pg.649]    [Pg.653]    [Pg.667]    [Pg.667]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Diastereoselective rhodium-catalyzed addition

Rhodium catalyzed arylboronic acid diastereoselective addition

© 2024 chempedia.info