Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium compounds, and

Bohnen et report a hydroformylation method to convert olefins or olefinically unsaturated compounds in the presence of at least one rhodium compound and sulfonated arylphosphines in ILs based on a quaternary ammonium ion or the equivalent of a multiply charged ammonium ion and organic sulfonates or sulfates. [Pg.175]

The structure of the rhodium compound and the kinetic study of the reaction provide strong evidence of a binuclear activation of dioxygen with complete effective transfer of both oxygen atoms to C = C bonds. [Pg.232]

Rhodium compounds and complexes are also commercially important catalysts. The hydroformylation of propene to butanal (a precursor of hfr(2-ethyUiexyl) phthalate, the PVC plasticizer) is catalyzed by hydridocarbonylrhodium(I) complexes. Iodo(carbonyl)rhodium(I) species catalyze the production of acetic acid from methanol. In the flne chemical industry, rhodium complexes with chiral ligands catalyze the production of L-DOPA, used in the treatment of Parkinson s disease. Rhodium(II) carboxylates are increasingly important as catalysts in the synthesis of cyclopropyl compounds from diazo compounds. Many of the products are used as synthetic, pyrethroid insecticides. Hexacyanorhodate(III) salts are used to dope silver halides in photographic emulsions to reduce grain size and improve gradation. [Pg.4055]

We find that the pentamethylcyclopentadienyl-rhodium compounds, and particularly the chloride (la), are useful catalysts for arene hydrogenation at 50°C and 50 atm H2 (19), Again, base (Et3N) is a necessary co-catalyst and the reactions proceed well in 2-propanol as solvent, where turnover numbers in excess of 200 per rhodium can easily be obtained for benzene-to-cyclohexane hydrogenation. The reactions also proceed in benzene, where turnover numbers in excess of 800 per rhodium are found, and even in the presence of water. No metal is formed under these conditions. [Pg.40]

The process is operated at 175°C/13-25 atm. Methanol dissolved in aqueous acetic acid is treated with carbon monoxide in the presence of a soluble rhodium compound and an iodide. The nature of the rhodium compound is not critical after an induction period in which conversion to the active complex occurs, similar activity is attained. The selectivity to acetic acid is 99% based on methanol and 90% on CO. The major side reaction is the water gas shift CO + H O On thermodynamic grounds the reaction CH3OH H-CO-1-2H2 CHjCH OH should be favoured, but the catalyst is very specific in promoting only the desired conversion into acetic acid. [Pg.386]

Vinyl acetate has been used as an acetylene equivalent in the synthesis of isoquinolones (Scheme 3.86) [90]. The reaction was catalyzed by a common rhodium compound and proceeded under very mild conditions to generate a diverse group of isoquinolones bearing a range of electron-donating and electron-withdrawing groups. [Pg.174]

Catalyst recovery is a major operational problem because rhodium is a cosdy noble metal and every trace must be recovered for an economic process. Several methods have been patented (44—46). The catalyst is often reactivated by heating in the presence of an alcohol. In another technique, water is added to the homogeneous catalyst solution so that the rhodium compounds precipitate. Another way to separate rhodium involves a two-phase Hquid such as the immiscible mixture of octane or cyclohexane and aliphatic alcohols having 4—8 carbon atoms. In a typical instance, the carbonylation reactor is operated so the desired products and other low boiling materials are flash-distilled. The reacting mixture itself may be boiled, or a sidestream can be distilled, returning the heavy ends to the reactor. In either case, the heavier materials tend to accumulate. A part of these materials is separated, then concentrated to leave only the heaviest residues, and treated with the immiscible Hquid pair. The rhodium precipitates and is taken up in anhydride for recycling. [Pg.78]

Patents on the catbonylation of methyl chlotide [74-87-3] using carbon monoxide [630-08-0] in the presence of rhodium, palladium, and tidium complexes, iodo compounds, and phosphonium iodides or phosphine oxides have been obtained (26). In one example the reaction was conducted for 35... [Pg.81]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Synthesis. The most important starting material for rhodium compounds is rhodium(III) chloride hydrate [20765-98-4], RhCl3 nH2 O. Other commercially available starting materials useful for laboratory-scale synthesis include [Rh2(0000113)4] [5503-41 -3], [Rh(NH3)201]0l2 [13820-95-6], [Rh20l2(0O)4] [32408-34-7], and [Rh20l2(cod)2] [12092-47-6]. [Pg.180]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

The hydroformylation reaction is carried out in the Hquid phase using a metal carbonyl catalyst such as HCo(CO)4 (36), HCo(CO)2[P( -C4H2)] (37), or HRh(CO)2[P(CgH3)2]2 (38,39). The phosphine-substituted rhodium compound is the catalyst of choice for new commercial plants that can operate at 353—383 K and 0.7—2 MPa (7—20 atm) (39). The differences among the catalysts are found in their intrinsic activity, their selectivity to straight-chain product, their abiHty to isomerize the olefin feedstock and hydrogenate the product aldehyde to alcohol, and the ease with which they are separated from the reaction medium (36). [Pg.51]

Earlier catalysts were based on cobalt, iron, and nickel. However, recent catalytic systems involve rhodium compounds promoted by methyl iodide and lithium iodide (48,49). Higher mol wt alkyl esters do not show any particular abiUty to undergo carbonylation to anhydrides. [Pg.390]

There is also clear evidence of a change from predominantly class-a to class-b metal charactristics (p. 909) in passing down this group. Whereas cobalt(III) forms few complexes with the heavier donor atoms of Groups 15 and 16, rhodium(III), and more especially iridium (III), coordinate readily with P-, As- and S-donor ligands. Compounds with Se- and even Te- are also known. Thus infrared. X-ray and nmr studies show that, in complexes such as [Co(NH3)4(NCS)2]" ", the NCS acts as an A -donor ligand, whereas in [M(SCN)6] (M = Rh, Ir) it is an 5-donor. Likewise in the hexahalogeno complex anions, [MX ] ", cobalt forms only that with fluoride, whereas rhodium forms them with all the halides except iodide, and iridium forms them with all except fluoride. [Pg.1129]

M(NO)(OCOCF3)2(PPh3)2. Both these complexes have 5-coordinate geometries with monodentate carboxylates. The rhodium compound has a square pyramidal structure with bent Rh-N-O (122°) but the iridium compound has a tbp structure with straight equatorial Ir-N—O (178°). The position of i/(N—O) reflects this difference (1800 cm-1 (Ir) and 1665 cm-1 (Rh)). [Pg.167]

The addition of allcenes to alkenes can also be accomplished by bases as well as by the use of catalyst systems consisting of nickel complexes and alkylaluminum compounds (known as Ziegler catalysts), rhodium catalysts, and other transition metal catalysts, including iron. These and similar catalysts also catalyze the 1,4 addition of alkenes to conjugated dienes, for example. [Pg.1020]

In the presence of metal catalysts such as rhodium compounds, aldehydes can add directly to alkenes to form ketones. The reaction of co-alkenyl aldehydes with rhodium catalyst leads to cyclic ketones, with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates. ° ... [Pg.1038]

An alternative preparation of aziridines reacts an alkene with iodine and chloramine-T (see p. 1056) generating the corresponding A-tosyl aziridine. Bromamine-T (TsNBr Na ) has been used in a similar manner." Diazoalkanes react with imines to give aziridines." Another useful reagent is NsN=IPh, which reacts with alkenes in the presence of rhodium compounds or Cu(OTf)2 to give N—Ns aziridines. Manganese salen catalysts have also been used with this reagent. ... [Pg.1058]

In the Li-Rh system LiRh is prepared from rhodium metal foil and liq Li in a 25 at% excess of the 1 1 molar ratio. The mixture is heated in an iron crucible to 750-880°C in Ar. The direct reaction of the elements in a molybdenum crucible at 800°C for 7 d produces LiRh. Identical methods produce Lilr and Lilrj with which the rhodium compounds are isostructural . The reaction of Rh metal with LiH at 600°C gives the ternary hydrides Li4RhH4 and Li4RhH5. [Pg.463]

A novel chiral dissymmetric chelating Hgand, the non-stabiUzed phosphonium ylide of (R)-BINAP 44, allowed in presence of [Rh(cod)Cl]2 the synthesis of a new type of eight-membered metallacycle, the stable rhodium(I) complex 45, interesting for its potential catalytic properties (Scheme 19) [81]. In contrast to the reactions of stabihzed ylides with cyclooctadienyl palladium or platinum complexes (see Scheme 20), the cyclooctadiene is not attacked by the carbanionic center. Notice that the reactions of ester-stabilized phosphonium ylides of BINAP with rhodium(I) (and also with palladium(II)) complexes lead to the formation of the corresponding chelated compounds but this time with an equilibrium be-... [Pg.55]

Although most industrial catalysts are heterogeneous, a growing number of industrial reactions use homogeneous catalysts. One example is the production of acetic acid. Most of the 2.1 billion kilograms of acetic acid produced annually is used in the polymer industry. The reaction of methanol and carbon monoxide to form acetic acid is catalyzed by a rhodium compound that dissolves in methanol ... [Pg.1110]

Metal-Catalyzed. Cyclopropanation. Carbene addition reactions can be catalyzed by several transition metal complexes. Most of the synthetic work has been done using copper or rhodium complexes and we focus on these. The copper-catalyzed decomposition of diazo compounds is a useful reaction for formation of substituted cyclopropanes.188 The reaction has been carried out with several copper salts,189 and both Cu(I) and Cu(II) triflate are useful.190 Several Cu(II)salen complexes, such as the (V-f-butyl derivative, which is called Cu(TBS)2, have become popular catalysts.191... [Pg.921]


See other pages where Rhodium compounds, and is mentioned: [Pg.1120]    [Pg.359]    [Pg.4057]    [Pg.50]    [Pg.1120]    [Pg.4056]    [Pg.1120]    [Pg.359]    [Pg.4057]    [Pg.50]    [Pg.1120]    [Pg.4056]    [Pg.2703]    [Pg.167]    [Pg.133]    [Pg.176]    [Pg.180]    [Pg.180]    [Pg.66]    [Pg.129]    [Pg.134]    [Pg.242]    [Pg.124]    [Pg.283]    [Pg.820]    [Pg.940]    [Pg.1003]    [Pg.1037]    [Pg.1039]    [Pg.1443]    [Pg.283]    [Pg.675]    [Pg.158]   


SEARCH



Cluster compounds, chiral iridium, osmium, rhodium, and ruthenium

Compounds of Cobalt, Rhodium and Iridium

Organotin Compounds with Cobalt Rhodium and Iridium

Rhodium complex compounds cations, ammines, transtetraammine and pentaammine

Rhodium complex compounds cis- and trans

Rhodium compounds

© 2024 chempedia.info