Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium carboxylic acids

The most common oxidatiou states and corresponding electronic configurations of rhodium are +1 which is usually square planar although some five coordinate complexes are known, and +3 (t7 ) which is usually octahedral. Dimeric rhodium carboxylates are +2 (t/) complexes. Compounds iu oxidatiou states —1 to +6 (t5 ) exist. Significant iudustrial appHcatious iuclude rhodium-catalyzed carbouylatiou of methanol to acetic acid and acetic anhydride, and hydroformylation of propene to -butyraldehyde. Enantioselective catalytic reduction has also been demonstrated. [Pg.179]

Rhodium catalyst is used to convert linear alpha-olefins to heptanoic and pelargonic acids (see Carboxylic acids, manufacture). These acids can also be made from the ozonolysis of oleic acid, as done by the Henkel Corp. Emery Group, or by steam cracking methyl ricinoleate, a by-product of the manufacture of nylon-11, an Atochem process in France (4). Neoacids are derived from isobutylene and nonene (4) (see Carboxylic acids, trialkylacetic acids). [Pg.94]

Acids require vigorous conditions for successful reductions on a synthetic scale, but they can be reduced to the alcohol in small yield over rhodium even at ambient conditions. This fractional reduction is without utility but it is sufficient to cause errors in absorption measurements when a carboxylic acid is used as a solvent. At 150 C and 2000 psig, RhjOj becomes a useful catalyst for carboxylic acid hydrogenation 13). [Pg.78]

As corroborated by deuterium labeling studies, the catalytic mechanism likely involves oxidative dimerization of acetylene to form a rhodacyclopen-tadiene [113] followed by carbonyl insertion [114,115]. Protonolytic cleavage of the resulting oxarhodacycloheptadiene by the Bronsted acid co-catalyst gives rise to a vinyl rhodium carboxylate, which upon hydrogenolysis through a six-centered transition structure and subsequent C - H reductive elimina-... [Pg.103]

Scheme 5.11 Reaction routes for various saturated and unsaturated carboxylic acids and alcohols using a rhodium catalyst and a lipase. s-g indicates sol-gel encapsulation of the catalyst superscript u and s indicate unsaturated and saturated compounds,... Scheme 5.11 Reaction routes for various saturated and unsaturated carboxylic acids and alcohols using a rhodium catalyst and a lipase. s-g indicates sol-gel encapsulation of the catalyst superscript u and s indicate unsaturated and saturated compounds,...
The separation of rhodium hydride complex from a stream comprising catalyst and high molecular weight aldehyde condensation products using a carboxylic acid functionalized ion exchange resin in illustrated schematically in Figure 2.12. [Pg.35]

The processes classified in the third group are of primary importance in elucidating the significance of electric variables in electrosorption and in the double layer structure at solid electrodes. These processes encompass interactions of ionic components of supporting electrolytes with electrode surfaces and adsorption of some organic molecules such as saturated carboxylic acids and their derivatives (except for formic acid). The species that are concerned here are weakly adsorbed on platinum and rhodium electrodes and their heat of adsorption is well below 20 kcal/mole (25). Due to the reversibility and significant mobility of such weakly adsorbed ions or molecules, the application of the i n situ methods for the surface concentration measurements is more appropriate than that of the vacuum... [Pg.248]

The terphenyl carboxylic acid derivatives have also been employed as supporting ligands in transition metal chemistry. For example, several binu-clear rhodium(II) terphenyl carboxylates (Fig. 20) have been reported.95 These were synthesized using the alternative route described in Eq. (8).96... [Pg.32]

Ferber and Bruckner reduced />-aminobenzoic acid using Adams catalyst (Pt02) at atmospheric pressure, and Schneider and Dillman reduced p-aminobenzoic acid using 10% rhodium on carbon at 140 atm. and 70°. 3-Isoquinuclidone has been prepared, by the previously mentioned investigators, by heating the dry 4-aminocyclohexane carboxylic acid at elevated temperatures. [Pg.121]

Th effect of pH on the rate of hydrogenation of water-soluble unsaturated carboxylic acids and alcohols catalyzed by rhodium complexes with PNS [24], PTA [29], or MePTA r [32] phosphine ligands can be similarly explained by the formation of monohydride complexes, [RhHPJ, facilitated with increasing basicity ofthe solvent. [Pg.73]

Hydrogenation of unsaturated carboxylic acids, such as acrylic, methacryUc, maleic, fumaric, cinnamic etc. acids was studied in aqueous solutions with a RhCU/TPPTS catalyst in the presence of p-CD and permethylated P-cyclodextrin [7]. In general, cyclodextrins caused an acceleration of these reactions. It is hard to make firm conclusions with regard the nature of this effect, since the catalyst itself is rather undefined (probably a phosphine-stabilized colloidal rhodium suspension, see 3.1.2) moreover the interaction of the substrates with the cyclodextrins was not studied separately. [Pg.234]

Other recent reports have also indicated that mixed-metal systems, particularly those containing combinations of ruthenium and rhodium complexes, can provide effective catalysts for the production of ethylene glycol or its carboxylic acid esters (5 9). However, the systems described in this paper are the first in which it has been demonstrated that composite ruthenium-rhodium catalysts, in which rhodium comprises only a minor proportion of the total metallic component, can match, in terms of both activity and selectivity, the previously documented behavior (J ) of mono-metallic rhodium catalysts containing significantly higher concentrations of rhodium. Some details of the chemistry of these bimetallic promoted catalysts are described here. [Pg.109]

Monometallic ruthenium, bimetallic cobalt-ruthenium and rhodium-ruthenium catalysts coupled with iodide promoters have been recognized as the most active and selective systems for the hydrogenation steps of homologation processes (carbonylation + hydrogenation) of oxygenated substrates alcohols, ethers, esters and carboxylic acids (1,2). [Pg.220]

Reactions of ruthenium catalyst precursors in carboxylic acid solvents with various salt promoters have also been described (170-172, 197) (Table XV, Expt. 7). For example, in acetic acid solvent containing acetate salts of quaternary phosphonium or cesium cations, ruthenium catalysts are reported to produce methyl acetate and smaller quantities of ethyl acetate and glycol acetates (170-172). Most of these reactions also include halide ions the ruthenium catalyst precursor is almost invariably RuC13 H20. The carboxylic acid is not a necessary component in these salt-promoted reactions as shown above, nonreactive solvents containing salt promoters also allow production of ethylene glycol with similar or better rates and selectivities. The addition of a rhodium cocatalyst to salt-promoted ruthenium catalyst solutions in carboxylic acid solvents has been reported to increase the selectivity to the ethylene glycol product (198). [Pg.389]


See other pages where Rhodium carboxylic acids is mentioned: [Pg.293]    [Pg.1016]    [Pg.102]    [Pg.242]    [Pg.114]    [Pg.147]    [Pg.247]    [Pg.4]    [Pg.169]    [Pg.224]    [Pg.328]    [Pg.332]    [Pg.350]    [Pg.199]    [Pg.21]    [Pg.650]    [Pg.653]    [Pg.1171]    [Pg.1366]    [Pg.165]    [Pg.112]    [Pg.113]    [Pg.192]    [Pg.140]    [Pg.2]    [Pg.17]    [Pg.175]    [Pg.148]    [Pg.203]    [Pg.263]    [Pg.376]    [Pg.377]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Carboxylic acids rhodium complexes

Rhodium carboxylates

Rhodium unsaturated carboxylic acid

© 2024 chempedia.info