Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode rhodium

Laister and Benham have shown that under more arduous conditions (immersion for 6 months in sea-water) a minimum thickness of 0-025 mm of silver is required to protect steel, even when the silver is itself further protected by a thin rhodium coating. In similar circumstances brass was completely protected by 0 012 5 mm of silver. The use of an undercoating deposit of intermediate electrode potential is generally desirable when precious metal coatings are applied to more reactive base metals, e.g. steel, zinc alloys and aluminium, since otherwise corrosion at discontinuities in the coating will be accelerated by the high e.m.f. of the couple formed between the coating and the basis metal. The thickness of undercoat may have to be increased substantially above the values indicated if the basis metal is affected by special defects such as porosity. [Pg.559]

Organometallics such as rhodium complex were also used for electrochemical regeneration of NAD(P)H from electrode (Figure 8.10) [7bj. [Pg.198]

Surface-modified electrodes were used for prevention of high overpotentials with direct oxidation or reduction of the cofactor, electrode fouling, and dimerization of the cofactor [7cj. Membrane electrochemical reactors were designed. The regeneration of the cofactor NADH was ensured electrochemically, using a rhodium complex as electrochemical mediator. A semipermeable membrane (dialysis or ultrafiltration) was integrated in the filter-press electrochemical reactor to confine... [Pg.198]

Given the results obtained on platinum electrodes discussed in some detail in the previous section, it is clearly of fundamental interest to study the mechanism of CO oxidation on other transition metal electrodes, and to compare the results with platinum. Rhodium has been the electrode material that has been studied in greatest detail after platinum, and results obtained with rhodium have provided some very significant insights into some of the general issues about the CO oxidation mechanism. [Pg.173]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]

Rand DAJ, Woods R. 1972. A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry. J Electroanal Chem 35 209-218. [Pg.311]

Rhodium and ruthenium complexes have also been studied as effective catalysts. Rh(diphos)2Cl [diphos = l,2-bis(diphenyl-phosphino)ethane] catalyzed the electroreduction of C02 in acetonitrile solution.146 Formate was produced at current efficiencies of ca. 20-40% in dry acetonitrile at ca. -1.5 V (versus Ag wire). It was suggested that acetonitrile itself was the source of the hydrogen atom and that formation of the hydride HRh(diphos)2 as an active intermediate was involved. Rh(bpy)3Cl3, which had been used as a catalyst for the two-electron reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH by Wienkamp and Steckhan,147 has also acted as a catalyst for C02 reduction in aqueous solutions (0.1 M TEAP) at -1.1 V versus SCE using Hg, Pb, In, graphite, and n-Ti02 electrodes.148 Formate was the main... [Pg.378]

Iodide was determined by an iodide-selective electrode (Ag2S/AgI) after other anions were separated by a rhodium nitrate element [101]. However, the electrode that was stabilised by 0.5 xm iodide responded to chloride ions in seawater, and the detection limit of iodide was 22 xg/l. [Pg.83]

The lower trace in Figure 1 shows the results of heating the tunnel junctions (complete with a lead top electrode) in a high pressure cell with hydrogen. It is seen that the CO reacts with the hydrogen to produce hydrocarbons on the rhodium particles. Studies with isotopes and comparison of mode positions with model compounds identify the dominant hydrocarbon as an ethylidene species (12). The importance of this observation is obviously not that CO and hydrogen react on rhodium to produce hydrocarbons, but that they will do so in a tunneling junction in a way so that the reaction can be observed. The hydrocarbon is seen as it forms from the chemisorbed monolayer of CO (verified by isotopes). As... [Pg.204]

The unmodified complex can be applied in very dilute concentrations allowing total turnover numbers (TONs), or a substrate (NAD(P)) to catalyst (rhodium complex) ratio of up to 400 [41]. This efficiency was due to the design of a three-dimensional electrode, which also resulted in an extraordinary space-time yield of the reduced cofactor of up to 1 kg IT1 per day. [Pg.1476]

Electrochemical Adsorption at Catalytic Electrodes. A classification of adsorption processes at catalytic electrodes, such as platinum or rhodium, first proposed by Horanyi (24) and further developed by Wieckowski (21,25,26), categorizes adsorption processes into three fundamental groups ... [Pg.248]

The processes classified in the third group are of primary importance in elucidating the significance of electric variables in electrosorption and in the double layer structure at solid electrodes. These processes encompass interactions of ionic components of supporting electrolytes with electrode surfaces and adsorption of some organic molecules such as saturated carboxylic acids and their derivatives (except for formic acid). The species that are concerned here are weakly adsorbed on platinum and rhodium electrodes and their heat of adsorption is well below 20 kcal/mole (25). Due to the reversibility and significant mobility of such weakly adsorbed ions or molecules, the application of the i n situ methods for the surface concentration measurements is more appropriate than that of the vacuum... [Pg.248]

The successful synthetic application of this electroenzymatic system has first been shown for the in-situ electroenzymatic reduction of pyruvate to D-lactate using the NADH-dependent D-lactate dehydrogenase. Electrolysis at — 0.6 V vs a Ag/AgCl-reference electrode of 50 mL of a 0.1 M tris-HCL buffer of pH 7.5 containing pentamethylcyclopentadienyl-2,2 -bipyridinechloro-rhodium(III) (1 x 10 3 M), NAD+ (2 x 10 3 M), pyruvate (2 x 10 2 M), 1300 units D-lactate dehydrogenase (divided cell, carbon foil electrode) after 3 h resulted in the formation of D-lactate (1.4 x 10 2 M) with an enantiomeric excess of 93.5%. This means that the reaction occurred at a rate of 5 turnovers per hour with respect to the mediator with a 70% turnover of the starting material. The current efficiency was 67% [67],... [Pg.110]

Several approaches have been undertaken to construct redox active polymermodified electrodes containing such rhodium complexes as mediators. Beley [70] and Cosnier [71] used the electropolymerization of pyrrole-linked rhodium complexes for their fixation at the electrode surface. An effective system for the formation of 1,4-NADH from NAD+ applied a poly-Rh(terpy-py)2 + (terpy = terpyridine py = pyrrole) modified reticulated vitreous carbon electrode [70]. In the presence of liver alcohol dehydrogenase as production enzyme, cyclohexanone was transformed to cyclohexanol with a turnover number of 113 in 31 h. However, the current efficiency was rather small. The films which are obtained by electropolymerization of the pyrrole-linked rhodium complexes do not swell. Therefore, the reaction between the substrate, for example NAD+, and the reduced redox catalyst mostly takes place at the film/solution interface. To obtain a water-swellable film, which allows the easy penetration of the substrate into the film and thus renders the reaction layer larger, we used a different approach. Water-soluble copolymers of substituted vinylbipyridine rhodium complexes with N-vinylpyrrolidone, like 11 and 12, were synthesized chemically and then fixed to the surface of a graphite electrode by /-irradiation. The polymer films obtained swell very well in aqueous... [Pg.112]

Figure 7 Differential tunneling spectrum of CO chemisorbed on alumina supported rhodium particles. Peak positions are not corrected for possible shifts due to the top lead electrode. Peak positions vary with rhodium coverage and CO exposure. Figure 7 Differential tunneling spectrum of CO chemisorbed on alumina supported rhodium particles. Peak positions are not corrected for possible shifts due to the top lead electrode. Peak positions vary with rhodium coverage and CO exposure.
The high sensitivity of tunneling spectroscopy and absence of strong selection rules allows infrared and Raman active modes to be observed for a monolayer or less of adsorbed molecules on metal supported alumina. Because tunneling spectroscopy includes problems with the top metal electrode, cryogenic temperatures and low intensity of some vibrations, model catalysts of evaporated metals have been studied with CO and acetylene as the reactive small molecules. Reactions of these molecules on rhodium and palladium have been studied and illustrate the potential of tunneling spectroscopy for modeling reactions on catalyst surfaces,... [Pg.429]

Both the rhodium atoms assume a tetrahedral geometry with respect to the RI12P2 plane (the TTD label derives from the tetrahedral-tetrahedral geometry of the two rhodium atoms in the dianion). On this basis, the overall electrode process involves the ECE mechanism illustrated in Scheme 4, where TPA = tetrahedral-planar monoanion, TTA = tetrahedral-tetrahedral monoanion. [Pg.391]

Like other non-oxidic semiconductors in aqueous solutions, surface oxidized and photocorrosive InP is a poor photoelectrode for water decomposition [19,27,32,33], To enhance properties several efforts have focused on coupling of the semiconductor with discontinuous noble metal layers of island-like topology. For example, rhodium, ruthenium and platinum thin films, less than 10 nm in thickness, have been electrodeposited onto p-type InP followed by a brief etching treatment to achieve an island-like topology on the surface [27,28]. In combination with a Pt counter electrode, under AM 1.5 illumination of 87 mW/cm the metal (Pt, Rh, Ru) functionalized p-InP photocathodes [27] see a reduction in the threshold voltage for water electrolysis from 1.23 V to 0.64 V, and in aqueous HCl solution a photocurrent density of 24 mA/cm with a photoconversion efficiency of 12% [27]. [Pg.451]


See other pages where Electrode rhodium is mentioned: [Pg.110]    [Pg.134]    [Pg.1250]    [Pg.94]    [Pg.98]    [Pg.441]    [Pg.69]    [Pg.237]    [Pg.319]    [Pg.315]    [Pg.265]    [Pg.407]    [Pg.166]    [Pg.361]    [Pg.244]    [Pg.477]    [Pg.255]    [Pg.239]    [Pg.204]    [Pg.206]    [Pg.206]    [Pg.314]    [Pg.315]    [Pg.426]    [Pg.156]    [Pg.296]    [Pg.549]    [Pg.791]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Formic Acid at Platinum, Rhodium, and Gold Electrodes

Platinum-rhodium electrodes

© 2024 chempedia.info