Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible reactions examples

Distillation with reaction is useful for reversible reactions. Examples would be reactions such as... [Pg.326]

Manipulating thermochemical equations Given a thermochemical equation, write the thermochemical eqnation for different multiples of the coefficients or for the reverse reaction. (EXAMPLE 6.3)... [Pg.254]

For kinetics not described by power law equations, the calculation of >jpore is complicated and we refer to the literature (Hong, Hecker, and Fletcher, 2000 Leven-spiel, 1999 BischofF, 1965 Valdman and Hughes, 1976 Roberts and Satterfield, 1965,1966). Here we only consider the reaction of a species adsorbed according to Langmuir and a first-order reversible reaction (Example 4.5.6). For a Lattgmuir type reaction [Eq. (4.5.2)] the rate related to the mass of catalyst is ... [Pg.251]

If the byproduct reaction is reversible and inerts are present, then changing the concentration of inerts if there is a change in the number of moles should be considered, as discussed above. Whether or not there is a change in the number of moles, recycling byproducts can suppress their formation if the bj iroduct-forming reaction is reversible. An example is in the production of ethylbenzene from benzene and ethylene ... [Pg.40]

Polyethylbenzenes (diethylbenzene, triethylbenzene, etc.) are also formed as unwanted byproducts through reversible reactions in series with respect to ethylbenzene but parallel with respect to ethylene. For example,... [Pg.40]

The definitions of the empirical rate laws given above do not exclude empirical rate laws of another fomi. Examples are reactions, where a reverse reaction is important, such as in the cis-trans isomerization of 1,2-dichloroethene ... [Pg.763]

Iodine has the lowest standard electrode potential of any of the common halogens (E = +0.54 V) and is consequently the least powerful oxidising agent. Indeed, the iodide ion can be oxidised to iodine by many reagents including air which will oxidise an acidified solution of iodide ions. However, iodine will oxidise arsenate(lll) to arsenate(V) in alkaline solution (the presence of sodium carbonate makes the solution sufficiently alkaline) but the reaction is reversible, for example by removal of iodine. [Pg.326]

Sulphonation is a reversible reaction and, in general, an excess of sulphuric acid is employed, for example ... [Pg.548]

The enhanced rate expressions for regimes 3 and 4 have been presented (48) and can be appHed (49,50) when one phase consists of a pure reactant, for example in the saponification of an ester. However, it should be noted that in the more general case where component C in equation 19 is transferred from one inert solvent (A) to another (B), an enhancement of the mass-transfer coefficient in the B-rich phase has the effect of moving the controlling mass-transfer resistance to the A-rich phase, in accordance with equation 17. Resistance in both Hquid phases is taken into account in a detailed model (51) which is apphcable to the reversible reactions involved in metal extraction. This model, which can accommodate the case of interfacial reaction, has been successfully compared with rate data from the Hterature (51). [Pg.64]

Much of the language used for empirical rate laws can also be appHed to the differential equations associated with each step of a mechanism. Equation 23b is first order in each of I and C and second order overall. Equation 23a implies that one must consider both the forward reaction and the reverse reaction. The forward reaction is second order overall the reverse reaction is first order in [I. Additional language is used for mechanisms that should never be apphed to empirical rate laws. The second equation is said to describe a bimolecular mechanism. A bimolecular mechanism implies a second-order differential equation however, a second-order empirical rate law does not guarantee a bimolecular mechanism. A mechanism may be bimolecular in one component, for example 2A I. [Pg.514]

Conversion of the C-2 amide to a biologically inactive nitrile, which can be further taken via a Ritter reaction (29) to the corresponding alkylated amide, has been accomphshed. When the 6-hydroxyl derivatives are used, dehydration occurs at this step to give the anhydro amide. Substituting an A/-hydroxymethylimide for isobutylene in the Ritter reaction yields the acylaminomethyl derivative (30). Hydrolysis affords an aminomethyl compound. Numerous examples (31—35) have been reported of the conversion of a C-2 amide to active Mannich adducts which are extremely labile and easily undergo hydrolysis to the parent tetracycline. This reverse reaction probably accounts for the antibacterial activity of these tetracyclines. [Pg.178]

Since the above reaction is reversible, it can be used to produce either propylene or ethylene and butenes depending on relative prices. For example, when propylene is inexpensive, ethylene and butenes are produced. When ethylene is inexpensive and there is a high demand for propylene, ethylene is dimerized to butene and then the reverse reaction is utilized. A commercial plant based on the reverse reaction has been built on the Gulf Coast. [Pg.444]

The number of independent rate equations is the same as the number of independent stoichiometric relations. In the present example. Reactions (1) and (2) are reversible reactions and are not independent. Accordingly, C,. and C, for example, can be eliminated from the equations for and which then become an integrable system. Usually only systems of linear differential equations with constant coefficients are solvable analytically. [Pg.684]

Example 5 Percent Approach to Equilibrium For a reversible reaction with rate equation r = L[A — (1 — A)Vl6], the size function kV,./V of a plug flow reactor will be found in terms of percent approach to equilibrium ... [Pg.694]

Ion exchange may be thought of as a reversible reaction involving chemically equivalent quantities. A common example for cation exchange is the familiar water-softening reaction... [Pg.1496]

Methanol synthesis will be used many times as an example to explain some concepts, largely because the stoichiometry of methanol synthesis is simple. The physical properties of all compounds are well known, details of many competing technologies have been published and methanol is an important industrial chemical. In addition to its relative simplicity, methanol synthesis offers an opportunity to show how to handle reversible reactions, the change in mole numbers, removal of reaction heat, and other engineering problems. [Pg.281]

For a system in which both forward and reverse reactions are important, the net rate of reaction can be expressed as the difference between the rate in the forward direction and that in the opposite direction. For example ... [Pg.113]

Adesina [14] considered the four main types of reactions for variable density conditions. It was shown that if the sums of the orders of the reactants and products are the same, then the OTP path is independent of the density parameter, implying that the ideal reactor size would be the same as no change in density. The optimal rate behavior with respect to T and the optimal temperature progression (T p ) have important roles in the design and operation of reactors performing reversible, exothermic reactions. Examples include the oxidation of SO2 to SO3 and the synthesis of NH3 and methanol CH3OH. [Pg.543]

Thiooarbamide.—This is an example of a reversible reaction, in which either ammonium-thiocyanate or thiouiea when heated yields the same equilibiium mi.xttue. It may bo shown by melting a little thiourea for a minute, when the presence of thiocyanate is indicated by the addition of P eCl,. [Pg.268]

For example, if a proton is donated to a base in the forward direction, the proton must be abstracted from the conjugate acid of the base in the reverse reaction. [Pg.126]

With these relationships and the appropriate experimental data we can plot reaction coordinate diagrams that are quantitatively useful in displaying the free energy differences between states. Figure 5-9 is an example, the data being drawn from Table 4-3, System 2. For this reversible reaction. [Pg.210]

Strictly speaking, the flow analogy is valid only for consecutive irreversible reactions, and it can be misleading if reverse reactions are significant. Even for irreversible reactions the rds concept has meaning only if one of the reactions is much slower than the others. For reversible reactions the free energy reaction coordinate diagram is a useful aid. In Fig. 5-10, for example, the intermediate 1 is unstable with respect to R and P, and its formation (the kf step) is the rds of the overall reaction. [Pg.213]

The reverse reaction (formation of metal alkyls by addition of alkenes to M-H) is the basis of several important catalytic reactions such as alkene hydrogenation, hydroformylation, hydroboration, and isomerization. A good example of decomposition by y3-elimination is the first-order intramolecular reaction ... [Pg.926]

Since the Fries rearrangement is a equilibrium reaction, the reverse reaction may be used preparatively under appropriate experimental conditions. An instructive example, which shows how the regioselectivity depends on the reaction temperature, is the rearrangement of m-cresyl acetate 8. At high temperatures the ortho-product 9 is formed, while below 100°C the para-derivative 10 is formed ... [Pg.128]

Olefin metatheses are equilibrium reactions among the two-reactant and two-product olefin molecules. If chemists design the reaction so that one product is ethylene, for example, they can shift the equilibrium by removing it from the reaction medium. Because of the statistical nature of the metathesis reaction, the equilibrium is essentially a function of the ratio of the reactants and the temperature. For an equimolar mixture of ethylene and 2-butene at 350°C, the maximum conversion to propylene is 63%. Higher conversions require recycling unreacted butenes after fractionation. This reaction was first used to produce 2-butene and ethylene from propylene (Chapter 8). The reverse reaction is used to prepare polymer-grade propylene form 2-butene and ethylene ... [Pg.247]

If a reaction is spontaneous under a given set of conditions, the reverse reaction must be nonspontaneous. For example, water does not spontaneously decompose to the elements by the reverse of the reaction referred to above. [Pg.451]

An example of a reversible reaction in the liquid phase is afforded by the esterification reaction between ethanol and acetic (ethanoic) acid forming ethyl acetate and water. Since, however, ethyl acetate undergoes conversion to acetic acid and ethanol when heated with water, the esterification reaction never proceeds to completion. [Pg.15]

Guldberg and Waage (1867) clearly stated the Law of Mass Action (sometimes termed the Law of Chemical Equilibrium) in the form The velocity of a chemical reaction is proportional to the product of the active masses of the reacting substances . Active mass was interpreted as concentration and expressed in moles per litre. By applying the law to homogeneous systems, that is to systems in which all the reactants are present in one phase, for example in solution, we can arrive at a mathematical expression for the condition of equilibrium in a reversible reaction. [Pg.16]

The specificity of enzyme reactions can be altered by varying the solvent system. For example, the addition of water-miscible organic co-solvents may improve the selectivity of hydrolase enzymes. Medium engineering is also important for synthetic reactions performed in pure organic solvents. In such cases, the selectivity of the reaction may depend on the organic solvent used. In non-aqueous solvents, hydrolytic enzymes catalyse the reverse reaction, ie the synthesis of esters and amides. The problem here is the low activity (catalytic power) of many hydrolases in organic solvents, and the unpredictable effects of the amount of water and type of solvent on the rate and selectivity. [Pg.26]

The reverse reaction has also been shown to occur (18). Another example is the reaction of methylenecyclobutane to produce dicyclobutylidene and ethene (18a). [Pg.134]

Benzo-l,2,3-triazin-4-ones with the general structure 6.54 (X = O, S, or H2) are obtained by diazotization of the appropriate aniline derivatives 6.53 (Scheme 6-38). In polar aprotic solvents (e. g., nitrobenzene) the reverse reaction takes place to give the diazonium ion (for an example see Kullick, 1966). Diazotization of 1,8-diamino-naphthalene yields l-i/-naphthol[l,8-cfe]triazine (6.55 Tavs et al., 1967). In concentrated HC1 the triazine ring is opened again. [Pg.133]

Thermal analysis has been widely and usefully applied in the solution of technical problems concerned with the commercial exploitation of natural dolomite including, for example, the composition of material in different deposits, the influence of impurities on calcination temperatures, etc. This approach is not, however, suitable for the reliable determination of kinetic parameters for a reversible reaction (Chap. 3, Sect. 6). [Pg.242]

Nonpolarizable interfaces correspond to interfaces on which a reversible reaction takes place. An Ag wire in a solution containing Ag+ions is a classic example of a nonpolarizable interface. As the metal is immersed in solution, the following phenomena occur3 (1) solvent molecules at the metal surface are reoriented and polarized (2) the electron cloud of the metal surface is redistributed (retreats or spills over) (3) Ag+ ions cross the phase boundary (the net direction depends on the solution composition). At equilibrium, an electric potential drop occurs so that the following electrochemical equilibrium is established ... [Pg.2]

To drive a reaction in a nonspontaneous direction, the external supply must generate a potential difference greater than the potential difference that would be produced by the reverse reaction. For example,... [Pg.630]


See other pages where Reversible reactions examples is mentioned: [Pg.64]    [Pg.64]    [Pg.402]    [Pg.392]    [Pg.227]    [Pg.286]    [Pg.21]    [Pg.204]    [Pg.307]    [Pg.12]    [Pg.122]    [Pg.838]    [Pg.15]    [Pg.17]    [Pg.146]    [Pg.415]   
See also in sourсe #XX -- [ Pg.87 , Pg.512 ]




SEARCH



Examples of thermodynamically controlled reverse hydrolysis reactions

Examples reaction

Reaction reverse

Reaction reversible

Reactions, reversing

Reversibility Reversible reactions

Some Examples of Reactions in Reverse Micelles and Microemulsions

© 2024 chempedia.info