Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse osmosis process economics

The economics of Reverse Osmosis Process will be highly favourable provided the desalination industry is taken up in a big way bringing down the capital investment. Water management and distribution particularly the water supply in the rural areas must be given top priority and should be under the direct control of central and federal government agencies and in this endeavour reverse osmosis has a potential... [Pg.302]

Concentration of Seawater by ED. In terms of membrane area, concentration of seawater is the second largest use. Warm seawater is concentrated by ED to 18 to 20% dissolved soHds using membranes with monovalent-ion-selective skins. The EDR process is not used. The osmotic pressure difference between about 19% NaCl solution and partially depleted seawater is about 20,000 kPa (200 atm) at 25°C, which is well beyond the range of reverse osmosis. Salt is produced from the brine by evaporation and crystallisa tion at seven plants in Japan and one each in South Korea, Taiwan, and Kuwait. A second plant is soon to be built in South Korea. None of the plants are justified on economic grounds compared to imported solar or mined salt. [Pg.176]

The successful development of asymmetric cellulose acetate membranes by Loeb and Sourirajan in the early sixties, at the University of California, Los Angeles, has been primarily responsible for the rapid development of Reverse Osmosis (RO) technology for brack sh/sea water desalination. Reverse Osmosis approaches a reversible process when the pressure barely exceeds the osmotic pressure and hence the energy costs are quite low. Theenergy requirement to purify one litre of water by RO is only O.OO3 KW as against 0,7 KV required just to supply the vaporisation energy to change the phase of one litre of water from liquid to vapour by evaporation. Thus RO has an inherent capability to convert brackish water to potable water at economic cost and thus contribute effectively to the health and prosperity of all humanity. [Pg.294]

By this process of reverse osmosis salts can be removed at very high values of osmotic pressure by exposing the solution to a thin vapor gap supported by capillarity. The process needs for its economical operation a gel which will remain permeable, while supporting the high air gap pressure. [Pg.208]

Most gas separation processes require that the selective membrane layer be extremely thin to achieve economical fluxes. Typical membrane thicknesses are less than 0.5 xm and often less than 0.1 xm. Early gas separation membranes [22] were adapted from the cellulose acetate membranes produced for reverse osmosis by the Loeb-Sourirajan phase separation process. These membranes are produced by precipitation in water the water must be removed before the membranes can be used to separate gases. However, the capillary forces generated as the liquid evaporates cause collapse of the finely microporous substrate of the cellulose acetate membrane, destroying its usefulness. This problem has been overcome by a solvent exchange process in which the water is first exchanged for an alcohol, then for hexane. The surface tension forces generated as liquid hexane is evaporated are much reduced, and a dry membrane is produced. Membranes produced by this method have been widely used by Grace (now GMS, a division of Kvaemer) and Separex (now a division of UOP) to separate carbon dioxide from methane in natural gas. [Pg.312]

Although the integration of RO with other pressure-driven membrane processes has led to significant improvements in membrane-based desalination process economics, another fundamental problem is the environmental aspects of brine discharge from reverse-osmosis desalination plants. [Pg.267]

Like many other specialities, electrodialysis plants are purchased as complete packages from a few available suppliers. Membrane replacement is about 10% per year. Even with prefiltering the feed, cleaning of membranes may be required at intervals of a few months. The comparative economics of electrodialysis for desalting brackish waters is discussed by Belfort (1984) for lower salinities, elecfrodialysis and reverse osmosis are competitive, but for higher ones elecfrodialysis is inferior. Elecfrodialysis has a number of important unique applications, for removal of high contents of minerals from foods and pharmaceuticals, for recovery of radioactive and other substances from dilute solutions, in electro-oxidation reduction processes and others. [Pg.510]

Membrane materials for reverse osmosis and ultrafiltration applications range from polysulfone and polyethersulfone, to cellulose acetate and cellulose diacetate [12,18-23]. Commercially available polyamide composite membranes for desalination of seawater, for example, are available from a variety of companies in the United States, Europe, and Japan [24]. The specific choice of membrane material to use depends on the process (e.g., type of liquid to be treated and operating conditions) and economic factors (e.g., cost of replacement membranes and cost of cleaning chemicals). The exact chemical composition and physical morphology of the membranes may vary from manufacturer to manufaemrer. Since the liquids to be treated and... [Pg.326]

Direct flow filtration has certain Umitations. The flux (filtration flow rate per unit membrane area) decreases over time as the process continues because the filtering media is loaded with more contaminant particles, as illustrated in Figure 14.1. Moreover, when the concentration of the contaminant in the feed stream is high, the filtering media must be replaced very frequently, which can be economically impractical. Also when the contaminant matter to be separated is small in size, requiring ultrafiltration or reverse osmosis membranes with much smaller pores, then direct filtration is less feasible as the flux declines very rapidly over time, again requiring frequent filter replacement. [Pg.411]

In contrary to other methods, also to reverse osmosis, MD allows complete purification in single stage, not involving additional processes for polishing permeate. It is a simple, economic, and environment friendly method when it is used for radwaste processing. [Pg.867]


See other pages where Reverse osmosis process economics is mentioned: [Pg.11]    [Pg.832]    [Pg.144]    [Pg.337]    [Pg.366]    [Pg.301]    [Pg.385]    [Pg.80]    [Pg.150]    [Pg.156]    [Pg.240]    [Pg.326]    [Pg.372]    [Pg.147]    [Pg.159]    [Pg.84]    [Pg.438]    [Pg.12]    [Pg.317]    [Pg.222]    [Pg.150]    [Pg.156]    [Pg.564]    [Pg.510]    [Pg.385]    [Pg.89]    [Pg.377]    [Pg.390]    [Pg.2]    [Pg.326]    [Pg.217]    [Pg.12]    [Pg.2570]    [Pg.3200]    [Pg.240]    [Pg.425]    [Pg.636]    [Pg.1199]   
See also in sourсe #XX -- [ Pg.838 ]

See also in sourсe #XX -- [ Pg.838 ]

See also in sourсe #XX -- [ Pg.838 ]




SEARCH



Economics process

Economics, processing

Osmosis

Osmosis reversed

Process economic

Process reverse

Reversal processing

Reverse osmosis

Reverse osmosis economics

© 2024 chempedia.info