Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Returns volatility

EXHIBIT 23.3 Examples of Shift, Twist and Butterfly Interest Risk Factors Shapes (top) and Return Volatilities (bottom) on 31 July 2002... [Pg.730]

Various forms of General Auto-Regressive Conditional Heteroske-dastic (GARCH) models have been used to estimate return volatility. Such models express current volatility as a function of previous returns and forecasts. For instance, the GARCH(1,1) model takes the form ... [Pg.741]

In the first class, azeotropic distillation, the extraneous mass-separating agent is relatively volatile and is known as an entrainer. This entrainer forms either a low-boiling binary azeotrope with one of the keys or, more often, a ternary azeotrope containing both keys. The latter kind of operation is feasible only if condensation of the overhead vapor results in two liquid phases, one of which contains the bulk of one of the key components and the other contains the bulk of the entrainer. A t3q)ical scheme is shown in Fig. 3.10. The mixture (A -I- B) is fed to the column, and relatively pure A is taken from the column bottoms. A ternary azeotrope distilled overhead is condensed and separated into two liquid layers in the decanter. One layer contains a mixture of A -I- entrainer which is returned as reflux. The other layer contains relatively pure B. If the B layer contains a significant amount of entrainer, then this layer may need to be fed to an additional column to separate and recycle the entrainer and produce pure B. [Pg.81]

Ethyl bromide soon distils over, and collects as heavy oily drops under the water in the receiving flask, evaporation of the very volatile distillate being thus prevented. If the mixture in the flask A froths badly, moderate the heating of the sand-bath. When no more oily drops of ethyl bromide come over, pour the contents of the receiving flask into a separating-funnel, and carefully run oflF the heavy lower layer of ethyl bromide. Discard the upper aqueous layer, and return the ethyl bromide to the funnel. Add an equal volume of 10% sodium carbonate solution, cork the funnel securely and shake cautiously. Owing to the presence of hydrobromic and sulphurous acids in the crude ethyl bromide, a brisk evolution of carbon dioxide occurs therefore release the... [Pg.101]

Sand. Buckets of dry sand for fire-extinguishing should be available in the laboratory and should be strictly reserved for this purpose, and not encumbered with sand-baths, waste-paper, etc. Most fires on the bench may be quickly smothered by the ample use of sand. Sand once used for this purpose should always be thrown away afterwards, and not returned to the buckets, as it may contain appreciable quantities of inflammable, non-volatile materials e.g., nitrobenzene), and be dangerous if used a second time. [Pg.528]

Because of its volatility, the cobalt catalyst codistills with the product aldehyde necessitating a separate catalyst separation step known as decobalting. This is typically done by contacting the product stream with an aqueous carboxyhc acid, eg, acetic acid, subsequently separating the aqueous cobalt carboxylate, and returning the cobalt to the process as active catalyst precursor (2). Alternatively, the aldehyde product stream may be decobalted by contacting it with aqueous caustic soda which converts the catalyst into the water-soluble Co(CO). This stream is decanted from the product, acidified, and recycled as active HCo(CO)4. [Pg.466]

Novolak Resins. In a conventional novolak process, molten phenol is placed into the reactor, foHowed by a precise amount of acid catalyst. The formaldehyde solution is added at a temperature near 90°C and a formaldehyde-to-phenol molar ratio of 0.75 1 to 0.85 1. For safety reasons, slow continuous or stepwise addition of formaldehyde is preferred over adding the entire charge at once. Reaction enthalpy has been reported to be above 80 kj /mol (19 kcal/mol) (29,30). The heat of reaction is removed by refluxing the water combined with the formaldehyde or by using a small amount of a volatile solvent such as toluene. Toluene and xylene are used for azeotropic distillation. FoHowing decantation, the toluene or xylene is returned to the reactor. [Pg.297]

Returning to the bottoms of the first column containing myristic, palmitic, oleic, and stearic acids, the recomputed mole fractions and volatilities are given in Table 2. [Pg.445]

Most distillations conducted commercially operate continuously, with a more volatile fraction recovered as distillate and a less volatile fraction recovered as bottoms or residue. If a portion of the distillate is condensed and returned to the process to enrich the vapors, the Hquid is called reflux. The apparatus in which the enrichment occurs is usually a vertical, cylindrical vessel called a stiU or distillation column. This apparatus normally contains internal devices for effecting vapor—Hquid contact the devices may be categorized as plates or packings. [Pg.155]

RASVSS Return Activated Sludge Volatile Suspended Solids. [Pg.623]

Initial Extraction Technique Continuous extraction apparatus was employed, including an extractor designed to contain the starting plant materials, a distillation flask to hold the solvent mixture, the flask being equipped with a reflux condenser, a drip device to facilitate the removal of the volatilized mixture from the condenser and to percolate it through the continuous extractor, and a Soxhiet type return. Means for heating the continuous extraction system were provided. [Pg.396]

When the distribution ratio is low, continuous methods of extraction are used. This procedure makes use of a continuous flow of immiscible solvent through the solution if the solvent is volatile, it is recycled by distillation and condensation and is dispersed in the aqueous phase by means of a sintered glass disc or equivalent device. Apparatus is available for effecting such continuous extractions with automatic return of the volatilised solvent (see the Bibliography, Section 9.10). [Pg.173]

Oxygen is not the only noncondensable gas found in boiler circuits, Problems occur due to the presence of carbon dioxide (C02). Carbon dioxide is steam-volatile and reacts with condensing steam to produce carbonic acid, which attacks steel condensate return lines. [Pg.152]

Sufficient volatility to remove oxygen from condensate return lines, where this is a problem (and this can often be a problem)... [Pg.483]

FIGURE 8.39 A schematic illustration of the process of fractional distillation. The temperature in the fractionating column decreases with height. The condensations and reboilings illustrated in Fig. 8.38 occur at increasing heights in the column. The less volatile component returns to the flask beneath the fractionating column, and the more volatile component escapes from the top, to be condensed and collected. [Pg.462]

Ductless hoods are equipped with built-in fans and filter systems which trap the volatiles being removed. In this manner, the spent air can be returned to the laboratory, thereby eliminating the need for exhaust ducts. The filter system must be tailored to the types of fumes to be removed. Its use is therefore limited and... [Pg.84]


See other pages where Returns volatility is mentioned: [Pg.747]    [Pg.747]    [Pg.185]    [Pg.9]    [Pg.9]    [Pg.352]    [Pg.599]    [Pg.710]    [Pg.37]    [Pg.11]    [Pg.105]    [Pg.44]    [Pg.496]    [Pg.436]    [Pg.147]    [Pg.360]    [Pg.327]    [Pg.293]    [Pg.471]    [Pg.1243]    [Pg.192]    [Pg.460]    [Pg.305]    [Pg.311]    [Pg.204]    [Pg.138]    [Pg.138]    [Pg.198]    [Pg.1035]    [Pg.836]    [Pg.987]    [Pg.109]    [Pg.332]    [Pg.311]    [Pg.19]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



RETURN

Returnability

© 2024 chempedia.info