Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resists practical applications

With eveiy change in ion concentration, there is an electrical effect generated by an electrochemical cell. The anion membrane shown in the middle has three cells associated with it, two caused by the concentration differences in the boundaiy layers, and one resulting from the concentration difference across the membrane. In addition, there are ohmic resistances for each step, resulting from the E/I resistance through the solution, boundary layers, and the membrane. In solution, current is carried by ions, and their movement produces a fric tion effect manifested as a resistance. In practical applications, I R losses are more important than the power required to move ions to a compartment wim a higher concentration. [Pg.2030]

Combination electrical methods Tomashov and Mikhailovsky describe a method developed in the Soviet Union. This test is essentially a combination of resistivity measurement and polarisation rates on iron electrodes in soil in situ. The usefulness and value of this procedure has not as yet been determined by practical application by corrosion engineers. The development of this combination test does, however, represent an attempt to integrate some of the complex factors controlling corrosion rates in soil. Much more research on these factors and methods of measurement should in the future enable the corrosion engineer to evaluate soil properties with respect to application of corrosion-alleviating operations. [Pg.388]

Perhaps the first practical application of carbonaceous materials in batteries was demonstrated in 1868 by Georges Le-clanche in cells that bear his name [20]. Coarsely ground MnO, was mixed with an equal volume of retort carbon to form the positive electrode. Carbonaceous powdered materials such as acetylene black and graphite are commonly used to enhance the conductivity of electrodes in alkaline batteries. The particle morphology plays a significant role, particularly when carbon blacks are used in batteries as an electrode additive to enhance the electronic conductivity. One of the most common carbon blacks which is used as an additive to enhance the electronic conductivity of electrodes that contain metal oxides is acetylene black. A detailed discussion on the desirable properties of acetylene black in Leclanche cells is provided by Bregazzi [21], A suitable carbon for this application should have characteristics that include (i) low resistivity in the presence of the electrolyte and active electrode material, (ii) absorption and retention of a significant... [Pg.236]

In processing, it is frequently necessary to separate a mixture into its components and, in a physical process, differences in a particular property are exploited as the basis for the separation process. Thus, fractional distillation depends on differences in volatility. gas absorption on differences in solubility of the gases in a selective absorbent and, similarly, liquid-liquid extraction is based on on the selectivity of an immiscible liquid solvent for one of the constituents. The rate at which the process takes place is dependent both on the driving force (concentration difference) and on the mass transfer resistance. In most of these applications, mass transfer takes place across a phase boundary where the concentrations on either side of the interface are related by the phase equilibrium relationship. Where a chemical reaction takes place during the course of the mass transfer process, the overall transfer rate depends on both the chemical kinetics of the reaction and on the mass transfer resistance, and it is important to understand the relative significance of these two factors in any practical application. [Pg.573]

The effect shown in Figs. 4.30, 9.4 and 9.5 is quite reversible and the catalyst restores its Na-free activity upon pumping away the Na from the catalyst surface by increasing the catalyst potential. NASICON could be used as an alternative to (3"-Al203 for potential practical applications of electrochemical promotion due to its better thermal stability and resistance to water vapour. [Pg.441]

To conclude this synthetic section, it appears very clear that the experimental approaches for preparation of POPs are very numerous and give accessibility to phosphazene polymers and copolymers with different structures and properties. Moreover, it has been recently estimated [10,383] that the total number of polyphosphazenes reported up to now in the literature is about 700, and that these materials can find potential practical application as flame- and fire-resistant polymers [44,283, 384-388] and additives [389, 390] thermally stable macromolecules [391] chemically inert compounds [392] low temper-... [Pg.182]

There are several drawbacks to the RDC that need to be emphasized. First, the fact that the interface must be supported adds a considerable resistance to the transport of species, which is in addition to that from the concentration boundary layers on both sides of the membrane. This limits the range of kinetics that can be studied. Second, in practical applications, blocking of the membrane can be problematic for some reactions. Third, measurements are generally made in the bulk of the solution and not at the interface although, as mentioned above, for certain processes it is possible to measure fluxes via a ring or an arc electrode. [Pg.340]

Carbon molecular sieve membranes Resistant to contaminants Intermediate hydrogen flux and selectivity Intermediate hydrogen flux and selectivity High water permeability Pilot-scale testing in low temperature WGS membrane reactor application Need demonstration of long-term stability and durability in practical applications... [Pg.316]

Several practical applications of hydrogen neutralization of impurities in compound semiconductors are described, including waveguiding, the lateral confinement of carriers for injection lasers, and the generation of resistive regions. Intentional hydrogenation has also been used to fine tune the properties of field-effect transistors. Finally, some remaining problems are identified. [Pg.27]

The polarization resistance of Cu in a UDI/phosphate buffer solution was found to be four times that of bare Cu. The proven inhibitor, BTA, also increases the polarization resistance. This result indicates that UDI may have practical applications. [Pg.265]

The modified supported powder electrodes used in the experiments hitherto described on the anodic activity of CoTAA are out of the question for practical application in fuel cells, as they do not have sufficient mechanical stability and their ohmic resistance is very high (about 1—2 ohm). For these reasons, compact electrodes with CoTAA were prepared by pressing or rolling a mixture of CoTAA, activated carbon, polyethylene, and PTFE powders in a metal gauze. The electrodes prepared in this way show different activities depending on the composition and the sintering conditions. Electrodes prepared under optimal conditions can be loaded up to about 40 mA/cm2 at a potential of 350 mV at 70 °C in 3 M HCOOH, with relatively good catalyst utilization (about 5 A/g) and adequate stability. [Pg.170]

As a general rule, the sensitivity of conventional electron beam resists is not sufficient for economic throughput in an x-ray lithographic system. This is particularly true of positive electron resists such as PMMA, the most widely used x-ray resist for experimental purposes, whose sensitivity of >500 mJ/cm2 is some 100 times too slow for practical application. Even PBS only shows a sensitivity of 94 mJ/cm2 to PdLa x-rays. Consequently, the major research effort has concentrated on negative resists because of their higher inherent sensitivity. [Pg.84]


See other pages where Resists practical applications is mentioned: [Pg.172]    [Pg.128]    [Pg.1100]    [Pg.192]    [Pg.14]    [Pg.198]    [Pg.478]    [Pg.123]    [Pg.554]    [Pg.146]    [Pg.211]    [Pg.222]    [Pg.236]    [Pg.298]    [Pg.399]    [Pg.2]    [Pg.97]    [Pg.484]    [Pg.9]    [Pg.138]    [Pg.5]    [Pg.294]    [Pg.172]    [Pg.313]    [Pg.141]    [Pg.49]    [Pg.70]    [Pg.69]    [Pg.382]    [Pg.359]    [Pg.627]    [Pg.189]    [Pg.107]    [Pg.104]    [Pg.500]    [Pg.91]    [Pg.111]    [Pg.184]   
See also in sourсe #XX -- [ Pg.299 , Pg.300 ]




SEARCH



Practical applications

© 2024 chempedia.info