Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reservoir wetting

The sum of the primary separator gas-oil ratio and VEQ is the standard cubic feet of reservoir wet gas required to produce one barrel of stock-tank liquid.2... [Pg.213]

EXAMPLE 7-7 Continue Example 7-4 by calculating the quantity of reservoir wet gas required to produce 61,015 scf/STB of primary separator gas. [Pg.213]

The z-factor can be obtained using the specific gravity of the reservoir wet gas calculated as in Examples 7-4 or 7-5. [Pg.214]

Gas is produced to surface separators which are used to extract the heavier ends of the mixture (typically the components). The dry gas is then compressed and reinjected into the reservoir to maintain the pressure above the dew point. As the recycling progresses the reservoir composition becomes leaner (less heavy components), until eventually it is not economic to separate and compress the dry gas, at which point the reservoir pressure is blown down as for a wet gas reservoir. The sales profile for a recycling scheme consists of early sales of condensate liquids and delayed sale of gas. An alternative method of keeping the reservoir above the dew point but avoiding the deferred gas sales is by water injection. [Pg.103]

It is believed that the majority of clastic reservoir rocks are water wet, but the subject of wettability is a contentious one. [Pg.122]

Koopal and co-workers [186] have extended this thermodynamic analysis to investigate the competitive wetting of a solid by two relatively immiscible liquids. They illustrate the tendency of silica to be preferentially wet by water over octane, a phenomenon of importance in oil reservoirs. [Pg.375]

The properties of several representative liquid-based ion-selective electrodes are presented in Table 11.3. An electrode using a liquid reservoir can be stored in a dilute solution of analyte and needs no additional conditioning before use. The lifetime of an electrode with a PVC membrane, however, is proportional to its exposure to aqueous solutions. For this reason these electrodes are best stored by covering the membrane with a cap containing a small amount of wetted gauze to... [Pg.483]

Wettabihty is defined as the tendency of one fluid to spread on or adhere to a soHd surface (rock) in the presence of other immiscible fluids (5). As many as 50% of all sandstone reservoirs and 80% of all carbonate reservoirs are oil-wet (10). Strongly water-wet reservoirs are quite rare (11). Rock wettabihty can affect fluid injection rates, flow patterns of fluids within the reservoir, and oil displacement efficiency (11). Rock wettabihty can strongly affect its relative permeabihty to water and oil (5,12). When rock is water-wet, water occupies most of the small flow channels and is in contact with most of the rock surfaces as a film. Cmde oil does the same in oil-wet rock. Alteration of rock wettabihty by adsorption of polar materials, such as surfactants and corrosion inhibitors, or by the deposition of polar cmde oil components (13), can strongly alter the behavior of the rock (12). [Pg.188]

When water is injected into a water-wet reservoir, oil is displaced ahead of the injected fluid. Injection water preferentially invades the small- and medium-sized flow channels or pores. As the water front passes, unrecovered oil is left in the form of spherical, uncoimected droplets in the center of pores or globules of oil extending through intercoimected rock pores. In both cases, the oil is completely surrounded by water and is immobile. There is htde oil production after injection water breakthrough at the production well (5). [Pg.188]

The in situ combustion method of enhanced oil recovery through air injection (28,273,274) is a chemically complex process. There are three types of in situ combustion dry, reverse, and wet. In the first, air injection results in ignition of cmde oil and continued air injection moves the combustion front toward production wells. Temperatures can reach 300—650°C. Ahead of the combustion front is a 90—180°C steam 2one, the temperature of which depends on pressure in the oil reservoir. Zones of hot water, hydrocarbon gases, and finally oil propagate ahead of the steam 2one to the production well. [Pg.195]

At 25°C, pH 7.5, 1.5 ppm FAC, and 25 ppm cyanuric acid, the calculated HOCl concentration is only 0.01 ppm. Although the monochloroisocyanurate ion hydrolyzes to only a small extent, it serves as a reservoir of HOCl because of rapid hydrolysis. Indeed, this reaction is so fast that HClCy behaves like FAC in all wet methods of analysis. Furthermore, since HClCy absorbs uv only below 250 nm, which is filtered out of solar radiation by the earth s atmosphere, it is more resistant to decomposition than the photoactive C10 , which absorbs sunlight at 250—350 nm and represents the principal mode of chlorine loss in unstabilized pools (30). As Httie as 5 ppm of bromide ion prevents stabilization of FAC by cyanuric acid (23) (see also Cyanuric and ISOCYANURIC acids). [Pg.301]

A fluid-bed incinerator uses hot sand as a heat reservoir for dewatering the sludge and combusting the organics. The turbulence created By the incoming air and the sand suspension requires the effluent gases to be treated in a wet scrubber prior to final discharge. The ash is removed from the scrubber water by a cyclone separator. The scrubber water is normally returned to the treatment process and diluted with the total plant effluent. The ash is normally buried. [Pg.2230]

Natural Gas Natural gas is a combustible gas that occurs in porous rock of the earth s crust and is found with or near accumulations of crude oil. It may occur alone in separate reservoirs, but more commonly it forms a gas cap entrapped between petroleum and an impervious, capping rock layer in a petroleum reservoir. Under high-pressure conditions, it is mixed with or dissolved in crude oil. Natural gas termed dry has less than 0.013 dmVm (0.1 gaLlOOO fF) of gasoline. Above this amount, it is termed wet. [Pg.2365]

Wet steam reservoirs are much more common than the simple dry type. Again, the field is full of very hot water, under such high pressure that it cannot boil. Wdien a lower-pressure escape route is provided by drilling, some of the water suddenly evaporates (flashes) to steam, and it is a steam-water mixture that reaches the surface. The steam can be used to drive a turbine. The hot water also can be used to drive a second turbine in a binai y cycle, described in the section Electricity Generation in this article. [Pg.574]

Fig. 6 Comparison of results of the AF model solved with and without streamflow trend for wet and dry years, expressed as years above and below the mean water residence time in the reservoir (0.25 years)... Fig. 6 Comparison of results of the AF model solved with and without streamflow trend for wet and dry years, expressed as years above and below the mean water residence time in the reservoir (0.25 years)...
Deposition of adamantane from petroleum streams is associated with phase transitions resulting from changes in temperature, pressure, and/or composition of reservoir fluid. Generally, these phase transitions result in a solid phase from a gas or a liquid petroleum fluid. Deposition problems are particularly cumbersome when the fluid stream is dry (i.e., low LPG content in the stream). Phase segregation of solids takes place when the fluid is cooled and/or depressurized. In a wet reservoir fluid (i.e., high LPG content in the stream) the diamondoids partition into the LPG-rich phase and the gas phase. Deposition of diamondoids from a wet reservoir fluid is not as problematic as in the case of dry streams [74, 75]. [Pg.224]

The wettability of the rock is responsible for the behavior of a reservoir subjected to any oil-recovery process. Because the chemical composition of the mineral surface is mostly responsible for its wetting behavior, the relationship between wettability and chemical composition of the surface is key information. [Pg.231]

T. Austad, B. Matre, J. Milter, A. Saevareid, and L. Oyno. Chemical flooding of oil reservoirs Pt 8 Spontaneous oil expulsion from oil-and water-wet low permeable chalk material by imbibition of aqueous surfactant solutions. Colloids Surfaces, Sect A, 137(1-3) 117-129, 1998. [Pg.353]

Interpretation for irreducible water saturation assumes that the rock is water-wet or mixed-wet (water-wet during drainage but the pore surfaces contacted by oil becomes oil-wet upon imbibition). If a porous medium is water-wet and a nonwetting fluid displaces the water (drainage), then the non-wetting fluid will first occupy the larger pores and will enter the smaller pores only as the capillary pressure is increased. This process is similar to the accumulation of oil or gas in the pore space of a reservoir. Thus it is of interest to estimate the irreducible water saturation that is retained by capillarity after the hydrocarbon accumulates in an oil or gas reservoir. The FFI is an estimate of the amount of potential hydrocarbon in... [Pg.330]


See other pages where Reservoir wetting is mentioned: [Pg.213]    [Pg.214]    [Pg.214]    [Pg.434]    [Pg.213]    [Pg.214]    [Pg.214]    [Pg.434]    [Pg.102]    [Pg.121]    [Pg.198]    [Pg.30]    [Pg.162]    [Pg.13]    [Pg.211]    [Pg.467]    [Pg.216]    [Pg.66]    [Pg.248]    [Pg.126]    [Pg.55]    [Pg.708]    [Pg.18]    [Pg.410]    [Pg.351]    [Pg.29]    [Pg.88]    [Pg.262]    [Pg.306]    [Pg.377]    [Pg.252]    [Pg.120]    [Pg.328]   
See also in sourсe #XX -- [ Pg.151 , Pg.152 ]




SEARCH



© 2024 chempedia.info