Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation techniques field jump

The several experimental methods allow a wide range of relaxation times to be studied. T-Jump is capable of measurements over the time range 1 to 10 s P-jump, 10 to 5 X 10" s electric field jump, 10 to 10 s and ultrasonic absorption, 10 to 10 " s. The detection method in the jump techniques depends upon the systems being studied, with spectrophotometry, fluorimetry, and conductimetry being widely used. [Pg.146]

Table III suggests some of the proton transfer kinetic studies one is likely to hear most about in the near future. The very first entry, colloidal suspensions, is one that Professor Langford mentioned earlier in these proceedings. In the relaxation field, one of the comparatively new developments has been the measurement of kinetics of ion transfer to and from colloidal suspensions. Yasunaga at Hiroshima University is a pioneer in this type of study (20, 21, 22). His students take materials such as iron oxides that form colloidal suspensions that do not precipitate rapidly and measure the kinetics of proton transfer to the colloidal particles using relaxation techniques such as the pressure-jump method. Table III suggests some of the proton transfer kinetic studies one is likely to hear most about in the near future. The very first entry, colloidal suspensions, is one that Professor Langford mentioned earlier in these proceedings. In the relaxation field, one of the comparatively new developments has been the measurement of kinetics of ion transfer to and from colloidal suspensions. Yasunaga at Hiroshima University is a pioneer in this type of study (20, 21, 22). His students take materials such as iron oxides that form colloidal suspensions that do not precipitate rapidly and measure the kinetics of proton transfer to the colloidal particles using relaxation techniques such as the pressure-jump method.
Commonly, a 10 volt/cm field will produce a 1% change in conductance of weak electrolytes. The measurement of very short relaxation times ( 50 ns) is possible by the electric-field jump method but the technique is generally complicated and mainly restricted to ionic equilibria. "... [Pg.143]

To study rapid reactions, traditional batch and flow techniques are inadequate. However, the development of stopped flow, electric field pulse, and particularly pressure-jump relaxation techniques have made the study of rapid reactions possible (Chapter 4). German and Japanese workers have very successfully studied exchange and sorption-desorption reactions on oxides and zeolites using these techniques. In addition to being able to study rapid reaction rates, one can obtain chemical kinetics parameters. The use of these methods by soil and environmental scientists would provide much needed mechanistic information about sorption processes. [Pg.3]

Methods such as nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA), electron spin resonance (ESR), infrared (IR), and laser raman spectroscopy could be used in conjunction with rate studies to define mechanisms. Another alternative would be to use fast kinetic techniques such as pressure-jump relaxation, electric field pulse, or stopped flow (Chapter 4), where chemical kinetics are measured and mechanisms can be definitively established. [Pg.17]

Another consideration in choosing a kinetic method is the objective of one s experiments. For example, if chemical kinetics rate constants are to be measured, most batch and flow techniques would be unsatisfactory since they primarily measure transport- and diffusion-controlled processes, and apparent rate laws and rate coefficients are determined. Instead, one should employ a fast kinetic method such as pressure-jump relaxation, electric field pulse, or stopped flow (Chapter 4). [Pg.40]

Previous investigations of helix-coil transition kinetics, which used a variety of fast relaxation methods (electric field jump, ultrasonic absorption, dielectric relaxation and temperature jump), encountered many difficulties (12). The systems studied were long homopolymers (>200 residues) that often had hydrolyzable side chains. Controversial results have been reported, depending on the experimental technique employed, because unwanted side chain reactions or molecular reorientation were often difficult to distinguish from the helix-coil conformational change. However, as observed here, a maximum in the relaxation times was detected for these experiments ranging from 15 ps to 20 ns and was attributed to the helix-coil transition. [Pg.742]

Measurements of the relaxation times by relaxation methods (involving a temperature jump [T-jump], pressure jump, electric field jump, or a periodic disturbance of an external parameter, as in ultrasonic techniques) are commonly used to follow the kinetics of very fast reactions. [Pg.48]

The objective of this chapter is to discuss the theory of chemical relaxation and its application to the study of soil chemical reaction rates. Transient relaxation techniques including temperature-jump (t-jump), pressure-jump (p-jump), concentration-jump (c-jump) and electric-field pulse will be discussed both as to their theoretical basis and experimental design and application. Application of these techniques to the study of several soil chemical phenomena will be discussed including anion and cation adsorp-tion/desorption reactions, ion-exchange processes, hydrolysis of soil minerals, and complexation reactions. [Pg.63]

The p-jump method has several advantages over the t-jump technique. Pressure-jump measurements can be repeated at faster intervals than those with t-jump. With the latter, the solution temperature must return to its ini-lial value before another measurement can be conducted. This may take 5 min. With p-jump relaxation, one can repeat experiments every 0.5 min. One can also measure longer relaxation times with p-jump than with t-jump relax-mion. As noted earlier, one of the components of a t-jump experiment is It heat source such as Joule heating. Such high electric fields and currents can destroy solutions that contain biochemical compounds. Such problems lIo not exist with the p-jump relaxation method. [Pg.69]

Chemical relaxation theory was presented in this chapter, and a number of transient relaxation techniques including t-jump, p-jump, c-jump, and electric-field pulse were discussed. The application of these methods to important soil chemical processes was also covered including anion and cation adsorption/desorption phenomena, hydrolysis of soil minerals, ion-e.xchangc processes, and complexation reactions. Relaxation methods have... [Pg.91]

An important turning point in reaction kinetics was the development of experimental techniques for studying fast reactions in solution. The first of these was based on flow techniques and extended the time range over which chemical changes could be observed from a few seconds down to a few milliseconds. This was followed by the development of a variety of relaxation techniques, including the temperature jump, pressure jump, and electrical field jump methods. In this way, the time for experimental observation was extended below the nanosecond range. Thus, relaxation techniques can be used to study processes whose half lives fall between the range available to classical experiments and that characteristic of spectroscopic techniques. [Pg.305]

Among the relaxation techniques (1) such as pressure-jump, electrical field-jump and ultrasonic absorption the temperature jump method is most widely used because almost every chemical equilibrium shows a variation with temperature. [Pg.47]

Apart from the temperature-jump technique, other relaxation methods that have been used are those of ultrasonic absorption" " and electric-field pulse. Another technique that has been used for some of the more slowly included guest molecules is that of stopped-flow. ... [Pg.234]

Figure 5. Median jump frequencies (Sr ) 1 for water adsorbed on NaX to saturation, for water on charcoal at saturation, and that expected for bulk water (from NMR relaxation times) dashed curve marked diff diffusion coefficients by magnetic field gradient technique normalized to (Sr) 1 by choice of jump distance of 2.7 A + dielectric relaxation times of Jansen... Figure 5. Median jump frequencies (Sr ) 1 for water adsorbed on NaX to saturation, for water on charcoal at saturation, and that expected for bulk water (from NMR relaxation times) dashed curve marked diff diffusion coefficients by magnetic field gradient technique normalized to (Sr) 1 by choice of jump distance of 2.7 A + dielectric relaxation times of Jansen...
A number of soil chemical phenomena are characterized by rapid reaction rates that occur on millisecond and microsecond time scales. Batch and flow techniques cannot be used to measure such reaction rates. Moreover, kinetic studies that are conducted using these methods yield apparent rate coefficients and apparent rate laws since mass transfer and transport processes usually predominate. Relaxation methods enable one to measure reaction rates on millisecond and microsecond time scales and 10 determine mechanistic rate laws. In this chapter, theoretical aspects of chemical relaxation are presented. Transient relaxation methods such as temperature-jump, pressure-jump, concentration-jump, and electric field pulse techniques will be discussed and their application to the study of cation and anion adsorption/desorption phenomena, ion-exchange processes, and hydrolysis and complexation reactions will he covered. [Pg.61]

For reactions that occur on time scales < 15 s, none of the techniques given above is satisfactory. To measure these reactions, one can employ relaxation methods (Table 3-1), such as pressure-jump, temperature-jump, concentration-jump, and electric-field pulse (Bernasconi, 1976 Gettins and Wyn-Jones, 1979 Bernasconi, 1986 Sparks, 1989, 1990). [Pg.62]

One can divide relaxation methods into those that are either transient or stationary. Transient methods include temperature-, pressure-, and concentration-jump and electric-field pulse techniques. With these, tht... [Pg.62]

It has been found that adsorption/desorption of anions such as Cl and CIO4 on soil constituents is very rapid. In fact, reequilibrium is too rapid to be observed using p-jump relaxation. Fortunately, the electric-field pulse technique can be used for such systems. This method was employed by Sasaki et al. (1983) to study CI and CIO4 adsorption on goethite. Two relaxations on the order of microseconds were observed in acidified aqueous suspensions of a-FeOOH with either NaCl or NaClO4. The fast relaxation was dependent on the applied electric field intensity and was attributed to a physical diffusion phenomenon. The slower relaxation was independent of the applied electric field intensity and was interpreted in terms of the association/dis-sociation reaction of counter ions with protonated surface hydroxyl groups as ion pairs... [Pg.84]

AiST Methods. After a rapid alteration of K by changing an external condition, the solution composition readjusts at a finite rate in an attempt to reattain equilibrium this process of adjustment is called relaxation. Several experimental techniques for achieving the necessarily rapid alterations of K have been developed. These include a pressure-jump (sound-absorption) method, an electric-field (dissociation) method, and a temperature-jump method. A temperature jump is brought about by passing an electrical current through the solution in a special cuvette, producing an abrupt, nearly instantaneous, rise in the temperature of the solution. A reaction then takes place as the concentrations adjust to the new temperature. Regardless of the type of perturbation used, the treatment of the data is essentially the same. [Pg.530]


See other pages where Relaxation techniques field jump is mentioned: [Pg.75]    [Pg.77]    [Pg.217]    [Pg.391]    [Pg.217]    [Pg.205]    [Pg.514]    [Pg.514]    [Pg.85]    [Pg.10]    [Pg.285]    [Pg.259]    [Pg.262]    [Pg.181]    [Pg.444]    [Pg.201]    [Pg.16]    [Pg.592]    [Pg.123]    [Pg.64]    [Pg.87]    [Pg.219]    [Pg.281]    [Pg.186]    [Pg.100]    [Pg.104]    [Pg.825]    [Pg.653]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Electric field jump relaxation technique

Relaxation field

© 2024 chempedia.info