Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative reflectivity, definition

Microdiffraction.—Perhaps more important than SAD techniques, particularly in the context of catalyst research, microdiffraction allows the user to benefit from the small probe size generated in STEM in the structural analysis of small particles and localized areas in thin foils. If the small probe is stopped on a particle, then clearly a transmission diffraction pattern will be observable after the beam has traversed the sample, provided we have the means available for its display. In CTEM such a pattern will, of course, be formed by the imaging system in a manner identical to SAD, but in STEM the pattern must be scanned across the detector. This is accomplished by means of a set of post-specimen scan coils which once more scan the diffracted beams across the axial bright-field detector. Such a pattern is shown in Figure 13 where a beam of approximately 10 A FWHM was stopped on a small second-phase particle during the omega-phase transformation in a Zr-Nb alloy. The relatively poor definition of the reflection is a consequence of both the convergent nature in the probe (necessary in order to obtain the smallest probe sizes) and a S/N limited by the available current in the probe. Nevertheless, weak reflections with half-order indices are clearly visible between the main alloy reflections and it is therefore possible to attempt structural... [Pg.95]

An enormous variety of solvates associated with many different kinds of compounds is reported in the literature. In most cases this aspect of the structure deserved little attention as it had no effect on other properties of the compound under investigation. Suitable examples include a dihydrate of a diphosphabieyclo[3.3.1]nonane derivative 29), benzene and chloroform solvates of crown ether complexes with alkyl-ammonium ions 30 54>, and acetonitrile (Fig. 4) and toluene (Fig. 5) solvates of organo-metallic derivatives of cyclotetraphosphazene 31. In most of these structures the solvent entities are rather loosely held in the lattice (as is reflected in relatively high thermal parameters of the corresponding atoms), and are classified as solvent of crystallization or a space filler 31a). However, if the geometric definition set at the outset is used to describe clathrates as crystalline solids in which guest molecules... [Pg.14]

How then, can one recover some quantity that scales with the local charge on the metal atoms if their valence electrons are inherently delocalized Beyond the asymmetric lineshape of the metal 2p3/2 peak, there is also a distinct satellite structure seen in the spectra for CoP and elemental Co. From reflection electron energy loss spectroscopy (REELS), we have determined that this satellite structure originates from plasmon loss events (instead of a two-core-hole final state effect as previously thought [67,68]) in which exiting photoelectrons lose some of their energy to valence electrons of atoms near the surface of the solid [58]. The intensity of these satellite peaks (relative to the main peak) is weaker in CoP than in elemental Co. This implies that the Co atoms have fewer valence electrons in CoP than in elemental Co, that is, they are definitely cationic, notwithstanding the lack of a BE shift. For the other compounds in the MP (M = Cr, Mn, Fe) series, the satellite structure is probably too weak to be observed, but solid solutions Coi -xMxl> and CoAs i yPv do show this feature (vide infra) [60,61]. [Pg.116]

The utilization of IR spectroscopy is very important in the characterization of pseudopolymorphic systems, especially hydrates. It has been used to study the pseudopolymorphic systems SQ-33600 [36], mefloquine hydrochloride [37], ranitidine HC1 [38], carbovir [39], and paroxetine hydrochloride [40]. In the case of SQ-33600 [36], humidity-dependent changes in the crystal properties of the disodium salt of this new HMG-CoA reductase inhibitor were characterized by a combination of physical analytical techniques. Three crystalline solid hydrates were identified, each having a definite stability over a range of humidity. Diffuse reflectance IR spectra were acquired on SQ-33600 material exposed to different relative humidity (RH) conditions. A sharp absorption band at 3640 cm-1 was indicative of the OH stretching mode associated with either strongly bound or crystalline water (Fig. 5A). The sharpness of the band is evidence of a bound species even at the lowest levels of moisture content. The bound nature of this water contained in low-moisture samples was confirmed by variable-temperature (VT) diffuse reflectance studies. As shown in Fig. 5B, the 3640 cm-1 peak progressively decreased in intensity upon thermal... [Pg.74]

It is obvious from the definition of standard enthalpy of formation that these quantities do not represent the absolute enthalpic stability of compounds. They merely reflect their enthalpic stability relative to that of the chemical elements in standard reference states (to which AfH° = 0 has been arbitrarily assigned). It is thus unreasonable to state that a given substance is more stable than another just because it has a lower standard enthalpy of formation. We can only use AfH° values to make such direct comparisons when we are assessing the relative stability of isomers. [Pg.10]

This equation shows that, at time t, each anisotropy term is weighted by a factor that depends on the relative contribution to the total fluorescence intensity at that time. This is surprising at first sight, but simply results from the definition used for the emission anisotropy, which is based on the practical measurement of the overall ly and I components. A noticeable consequence is that the emission anisotropy of a mixture may not decay monotonously, depending of the values of r, and Ti for each species. Thus, r(t) should be viewed as an apparent or a technical anisotropy because it does not reflect the overall orientation relaxation after photoselection, as in the case of a single population of fluorophores. [Pg.133]

The definition of aromaticity conceived by Hiickel strictly applies to monocyclic ring systems, but indole, constructed from the fusion of benzene and pyrrole, behaves as an aromatic compound, like quinoline and isoquinoline. The ring fusion, however, affects the properties of both components. This is reflected in the valence bond description of indole, shown in Scheme 7.1, where one canonical representation shows electron density shared between N-1 and C-3 in the pyrrole unit (implying enamine character). Note that although other canonical forms can be drawn, where the lone-pair electrons are delocalized into the benzenoid ring, their energy content is relatively high and they are of limited importance. [Pg.97]


See other pages where Relative reflectivity, definition is mentioned: [Pg.727]    [Pg.341]    [Pg.20]    [Pg.834]    [Pg.337]    [Pg.455]    [Pg.97]    [Pg.93]    [Pg.7]    [Pg.80]    [Pg.136]    [Pg.462]    [Pg.12]    [Pg.64]    [Pg.162]    [Pg.116]    [Pg.152]    [Pg.5]    [Pg.267]    [Pg.27]    [Pg.57]    [Pg.850]    [Pg.222]    [Pg.146]    [Pg.173]    [Pg.151]    [Pg.91]    [Pg.185]    [Pg.3]    [Pg.646]    [Pg.105]    [Pg.147]    [Pg.32]    [Pg.115]    [Pg.47]    [Pg.528]    [Pg.680]    [Pg.146]    [Pg.302]    [Pg.968]   
See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.2 , Pg.15 ]




SEARCH



Reflectance, definition

Reflection, definition

Reflectivity, definition

Relative definition

Relative reflectivity

© 2024 chempedia.info