Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reinforcing fillers mechanical properties

The role of the fillers in composite resins is to reinforce their mechanical properties and provide a blended material whose overall properties make it suitable for the clinical repair of teeth. A limited range of materials has been used, with greater emphasis on variations in the particle size and size distribution than on chemical composition. Early materials were filed with powdered quartz, whereas modem composites are more likely to be filled with finely divided barium silicate or a radio-opaque silicate glass [8]. Filler loadings are typically of the order of 55% by volume, as they were in Bowen s original formulation [9]. [Pg.49]

Reinforcing fillers (active) Fumed Silica (Si02) precipitated calcium carbonate (CaCOi) carbon black Thixotropic reinforcing agents (non-slump), adjustment of mechanical properties (cohesion) provide toughness to the elastomer as opposed to brittle materials. [Pg.701]

Non-reinforcing fillers (passive) Ground calcium carbonate (CaCO ) Reduce formulation cost adjust rheology, and mechanical properties. [Pg.701]

Polyester resins, reinforced with glass fibers, are used widely in the construction of process equipment. Some physical and mechanical properties are presented in Table 3.48. Table 3.49 lists various materials used as filler and the properties they impart to different plastics. [Pg.120]

The term s plastic, polymer, resin, elastomer, and reinforced plastic (RP) are some-what synonymous. However, polymer and resin usually denote the basic material. Whereas plastic pertains to polymers or resins containing additives, fillers, and/or reinforcements. Recognize that practically all materials worldwide contain some type of additive or ingredient. An elastomer is a rubberlike material (natural or synthetic). Reinforced plastics (also called composites although to be more accurate called plastic composites) are plastics with reinforcing additives, such as fibers and whiskers, added principally to increase the product s mechanical properties. [Pg.338]

In general adding reinforcing fibers significantly increases mechanical properties. Particulate fillers of various types usually increase the modulus, plasticizers generally decrease the modulus but enhance flexibility, and so on. These RPs can also be called composites. However the name composites Utterly identifies thousands of different combinations with very few that include the use of plastics (Table 6-18). In using the term com-... [Pg.349]

The mechanical properties of pure polymeric materials are often inadequate for particular applications, and to overcome this problem these materials may be reinforced in some way. The most common method is to include a substantial amount of a rigid filler or fillers, generally as finely divided powder, or as rods or fibres. For certain materials, elastomeric particles may be used, and these have the effect of reducing brittleness. [Pg.113]

A pyrolysis technique was investigated as a method for the chemical recycling of glass fibre-reinforced unsaturated polyester SMC composites. The proeess yielded liquid products and gases and also a solid residue formed in the pyrolysis of glass fibres and fillers. The solid residue was used as a reinforeement/filler in unsaturated polyester BMC composites, and the influenee on mechanical properties was studied in comparison with BMC prepared entirely from virgin materials. [Pg.36]

The study of the mechanical properties of filled elastomer systems is a chaUenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward mle of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fiUers hke sihca and carbon black on the reinforcement of elastomers.In general, the strucmre-property relationships developed for filled elastomers have evolved into the foUowing major areas FiUer structure, hydrodynamic reinforcement, and interactions between fiUers and elastomers. [Pg.503]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

Attempts have been made to improve the mechanical properties of these cements by adding reinforcing fillers (Lawrence Smith, 1973 Brown Combe, 1973 Barton et al, 1975). Lawrence Smith (1973) examined alumina, stainless steel fibre, zinc silicate and zinc phosphate. The most effective filler was found to be alumina powder. When added to zinc oxide powder in a 3 2 ratio, compressive strength was increased by 80 % and tensile strength by 100 % (cements were mixed at a powder/liquid ratio of 2 1). Because of the dilution of the zinc oxide, setting time (at 37 °C) was increased by about 100%. As far as is known, this invention has not been exploited commercially. [Pg.113]


See other pages where Reinforcing fillers mechanical properties is mentioned: [Pg.525]    [Pg.525]    [Pg.277]    [Pg.339]    [Pg.339]    [Pg.636]    [Pg.421]    [Pg.1448]    [Pg.125]    [Pg.345]    [Pg.244]    [Pg.184]    [Pg.368]    [Pg.328]    [Pg.269]    [Pg.322]    [Pg.50]    [Pg.335]    [Pg.18]    [Pg.493]    [Pg.504]    [Pg.264]    [Pg.288]    [Pg.426]    [Pg.691]    [Pg.441]    [Pg.947]    [Pg.7]    [Pg.7]    [Pg.28]    [Pg.126]    [Pg.128]    [Pg.181]    [Pg.383]    [Pg.607]    [Pg.616]    [Pg.794]    [Pg.779]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Mechanical filler

Mechanical properties reinforcement

Mechanical properties, fillers

Mechanical reinforcement

Mechanism reinforcing

Reinforcement fillers

Reinforcement, mechanisms

Reinforcing fillers

Reinforcing property

© 2024 chempedia.info