Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference Electrodes polarization

Figure C2.8.3. A tliree-electrode electrochemical set-up used for the measurement of polarization curves. A potentiostat is used to control the potential between the working electrode and a standard reference electrode. The current is measured and adjusted between an inert counter-electrode (typically Pt) and the working electrode. Figure C2.8.3. A tliree-electrode electrochemical set-up used for the measurement of polarization curves. A potentiostat is used to control the potential between the working electrode and a standard reference electrode. The current is measured and adjusted between an inert counter-electrode (typically Pt) and the working electrode.
Greater deviations which are occasionally observed between two reference electrodes in a medium are mostly due to stray electric fields or colloid chemical dielectric polarization effects of solid constituents of the medium (e.g., sand [3]) (see Section 3.3.1). Major changes in composition (e.g., in soils) do not lead to noticeable differences of diffusion potentials with reference electrodes in concentrated salt solutions. On the other hand, with simple metal electrodes which are sometimes used as probes for potential controlled rectifiers, certain changes are to be expected through the medium. In these cases the concern is not with reference electrodes, in principle, but metals that have a rest potential which is as constant as possible in the medium concerned. This is usually more constant the more active the metal is, which is the case, for example, for zinc but not stainless steel. [Pg.87]

Point (a) only concerns simple metal electrodes and needs to be tested for each case. Point (b) is important for the measuring instrument being used. In this respect, polarization of the reference electrode leads to less error than an ohmic voltage drop at the diaphragm. Point (c) has to be tested for every system and can result in the exclusion of certain electrode systems for certain media and require special measures to be taken. [Pg.87]

In the cathodic protection of storage tanks, potentials should be measured in at least three places, i.e., at each end and at the top of the cover [16]. Widely different polarized areas arise due to the small distance which is normally the case between the impressed current anodes and the tank. Since such tanks are often buried under asphalt, it is recommended that permanent reference electrodes or fixed measuring points (plastic tubes under valve boxes) be installed. These should be located in areas not easily accessible to the cathodic protection current, for example between two tanks or between the tank wall and foundations. Since storage tanks usually have several anodes located near the tank, equalizing currents can flow between the differently loaded anodes on switching off the protection system and thus falsify the potential measurement. In such cases the anodes should be separated. [Pg.100]

In Fig. 3-25 the locational dependence of t/, and is shown together. For practical applications and because of possible disturbance by foreign fields (e.g., stray currents) and t/g are less amenable to evaluation than f/g, which can always be determined by a point of inflection between two extreme values [50]. Furthermore, it should be indicated by Fig. 2-7 that there is a possibility of raising the sensitivity by anodic polarization which naturally is only applicable with small objects. In such cases care must be particularly taken that the counter electrode is sufficiently far away so that its voltage cone does not influence the reference electrodes. [Pg.125]

Good current distribution can be expected because of the good conductivity of the electrolyte. However, if a large area of the coating is damaged, local underprotection cannot be ruled out due to the low polarization resistance. For this reason, control with several reference electrodes is advisable. [Pg.468]

Figure 21. Angular movement of the fee end of a bilayer during the flow of a cathodic current using the conducting polymer as cathode. A platinum sheet (left side of the picture) is used as anode. The reference electrode is observed at the bottom, a to e Movement during the reduction process e to a Movement under flow of an anodic current. The movement is stopped at any intermediate point (a, b, c, d, or e) by stopping the current flow, and this position is maintained for a long time without polarization. Figure 21. Angular movement of the fee end of a bilayer during the flow of a cathodic current using the conducting polymer as cathode. A platinum sheet (left side of the picture) is used as anode. The reference electrode is observed at the bottom, a to e Movement during the reduction process e to a Movement under flow of an anodic current. The movement is stopped at any intermediate point (a, b, c, d, or e) by stopping the current flow, and this position is maintained for a long time without polarization.
Indicator electrodes are used both for analytical purposes (in determining the concentrations of different substances from values of the open-circuit potential or from characteristic features of the polarization curves) and for the detection and quantitative characterization of various phenomena and processes (as electrochemical sensors or signal transducers). One variety of indicator electrode are the reference electrodes, which have stable and reproducible values of potential and thus can be used to measure the potentials of other electrodes. [Pg.17]

Electrochemical measurements usually concern not a galvanic cell as a whole but one of the electrodes, the working electrode (WE). However, a complete cell including at least one other electrode is needed to measure the WE potential or allow current to flow. In the simplest case a two-electrode cell (Eig.l2.1a) is used for electrochemical studies. The second electrode is used either as the reference electrode (RE) or as an auxiliary electrode (AE) to allow current to flow. In some cases these two functions can be combined for example, when the surface area of the auxiliary electrode is much larger than that of the working electrode so that the current densities at the AE are low, it is essentially not polarized and thus can be used as RE. [Pg.191]

For measurements involving current flow, three-electrode cells (Fig. ll.lb) are more common they contain both an AE and a RE. No current flows in the circuit of the reference electrode, which therefore is not polarized. However, the OCV value that is measured includes the ohmic potential drop in the electrolyte section between the working and reference electrode. To reduce this undesired contribution from ohmic... [Pg.191]

Constant A in Eqs. (29.5) and (29.6) is about 4.4 eV when the standard hydrogen electrode is used as the reference electrode. This value has been determined from experimental values for the electron work function of mercury in vacuum, which is 4.48 eV, and for the Volta potential, between the solution and a mercury electrode polarized to = 0 V (SHE), which is -0.07 V (the work of electron transfer is 0.07 eV). The sum of these two values, according to Eq. (9.8), corresponds to the solution s electron work function at this potential (i.e., to the value of constant A with an inverted sign). [Pg.561]

A well-defined polarization of an ITIES can be accomplished by means of a four-electrode system with two couples of current-supplying (counter) and potentialmeasuring (reference) electrodes, which are connected to phases (w) and (o) in the... [Pg.612]

FIGURE 32.2 Scheme of a four-electrode system for polarization measurements at an ITIES comprising a potentiostat (POT), two reference electrodes connected to the cell by means of Luggin capillaries (REl, RE2), and two counter electrodes (CEl, CE2). The planar ITIES is formed at the edge of a round hole in a glass barrier between the spaces for the aqueous (water) and the organic (org) phases. [Pg.613]

For isolating the overpotential of the working electrode, it is common practice to admit hydrogen to the counter-electrode (the anode in a PEMFC the cathode in a direct methanol fuel cell, DMFC) and create a so-called dynamic reference electrode. Furthermore, the overpotential comprises losses associated with sluggish electrochemical kinetics, as well as a concentration polarization related to hindered mass transport ... [Pg.518]

One important advantage of the polarized interface is that one can determine the relative surface excess of an ionic species whose counterions are reversible to a reference electrode. The adsorption properties of an ionic component, e.g., ionic surfactant, can thus be studied independently, i.e., without being disturbed by the presence of counterionic species, unlike the case of ionic surfactant adsorption at nonpolar oil-water and air-water interfaces [25]. The merits of the polarized interface are not available at nonpolarized liquid-liquid interfaces, because of the dependency of the phase-boundary potential on the solution composition. [Pg.121]

The electrochemical circuitry required for SECM is relatively straightforward. Since the interface is not generally externally polarized in SECM measurements of liquid-liquid interfaces, a simple two-electrode system suffices (Fig. 3). A potential is applied to the tip, with respect to a suitable reference electrode, to drive the process of interest at the tip and the corresponding current that flows is typically amplified by a current-to-voltage converter. [Pg.295]

Reference electrodes. There are two types of reference electrodes (see the scheme in Section 1.3.1) (a) those constructed as a reference type and (b) those used as a reference type both types fulfil the requirement of a constant reference potential by either being non-polarizable or becoming non-polarized during the measurememt. [Pg.305]

The interfacial tension always depends on the potential of the ideal polarized electrode. In order to derive this dependence, consider a cell consisting of an ideal polarized electrode of metal M and a reference non-polarizable electrode of the second kind of the same metal covered with a sparingly soluble salt MA. Anion A is a component of the electrolyte in the cell. The quantities related to the first electrode will be denoted as m, the quantities related to the reference electrode as m and to the solution as 1. For equilibrium between the electrons and ions M+ in the metal phase, Eq. (4.2.17) can be written in the form (s = n — 2)... [Pg.217]

Fig. 4.10 Capillary electrometer. The basic component is the cell consisting of an ideally polarized electrode (formed by the mercury meniscus M in a conical capillary) and the reference electrode R. This system is connected to a voltage source S. The change of interfacial tension is compensated by shifting the mercury reservoir H so that the meniscus always has a constant position. The distance between the upper level in the tube and the meniscus h is measured by means of a cathetometer C. (By courtesy of L. Novotny)... Fig. 4.10 Capillary electrometer. The basic component is the cell consisting of an ideally polarized electrode (formed by the mercury meniscus M in a conical capillary) and the reference electrode R. This system is connected to a voltage source S. The change of interfacial tension is compensated by shifting the mercury reservoir H so that the meniscus always has a constant position. The distance between the upper level in the tube and the meniscus h is measured by means of a cathetometer C. (By courtesy of L. Novotny)...

See other pages where Reference Electrodes polarization is mentioned: [Pg.66]    [Pg.425]    [Pg.66]    [Pg.425]    [Pg.197]    [Pg.1926]    [Pg.1948]    [Pg.2720]    [Pg.467]    [Pg.2430]    [Pg.119]    [Pg.88]    [Pg.235]    [Pg.292]    [Pg.383]    [Pg.230]    [Pg.422]    [Pg.549]    [Pg.206]    [Pg.216]    [Pg.30]    [Pg.32]    [Pg.613]    [Pg.19]    [Pg.121]    [Pg.432]    [Pg.740]    [Pg.683]    [Pg.212]    [Pg.212]    [Pg.220]    [Pg.244]    [Pg.312]    [Pg.435]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Electrodes polarization

Polarized electrodes

Reference Electrodes for Use in Polar Aprotic Solvents

Reference electrodes

Reference electrodes experimental polarization measurements

© 2024 chempedia.info