Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive glycosylation

Fig. 24 Nickel(I)-catalyzed reductive glycosyl radical addition reactions... Fig. 24 Nickel(I)-catalyzed reductive glycosyl radical addition reactions...
In other approaches, the glycosidic bond is synthesized in some masked form. Thus, in Barett s reductive glycosylation [634] (Scheme 4.61), an ester bond is created first at the anomeric center using the uronic acid derivative 293. Thionation of the carbonyl group of 294 was followed by reductive desulfurization to give the disaccharide 296. [Pg.168]

Nickel-catalyzed ketone and aldehyde hydrosilylations have been developed with well-defined Ni(II) hydrides using phosphine anilide ligands (Scheme 3-84). This process is tolerant of a variety of functional groups including aryl halides. In mechanistically distinct processes, nickel(O) complexes of NHCs were shown to catalyze ketone hydrosilylations using carbohydrate-derived silanes in a process that allows reductive glycosylations of ketones. Chemoselectivity of the latter method was optimal in the presence of Ti(OR)4 additives. [Pg.396]

Indazole, 5,5-dimethyl-3-trifluoromethyl-4,5-dihydro-trichomonacidal activity, 5, 291 Indazole, 2-ethoxycarbonyl-reactions, 5, 269 Indazole, 3-fluoro-synthesis, S, 263 Indazole, 1-germyl-synthesis, 5, 236 Indazole, 1-glycosyl-synthesis, 5, 289 Indazole, 2-glycosyl-synthesis, 5, 289 Indazole, halo-reactions, S, 266 Indazole, 2-hydroxy-methylation, 5, 269 Indazole, 3-hydroxy-reactions, S, 264 Indazole, 6-hydroxy-diazo coupling, 5, 86 Indazole, hydroxyphenyl-synthesis, S, 288 Indazole, 3-iodo-synthesis, S, 241 Indazole, l-isopropyl-3-phenyl-reduction, 5, 243 Indazole, 3-mercapto-1 -substituted tautomerism, 5, 265 Indazole, methoxy-... [Pg.664]

Purines, N-alkyl-N-phenyl-synthesis, 5, 576 Purines, alkylthio-hydrolysis, 5, 560 Mannich reaction, 5, 536 Michael addition reactions, 5, 536 Purines, S-alkylthio-hydrolysis, 5, 560 Purines, amino-alkylation, 5, 530, 551 IR spectra, 5, 518 reactions, 5, 551-553 with diazonium ions, 5, 538 reduction, 5, 541 UV spectra, 5, 517 Purines, N-amino-synthesis, 5, 595 Purines, aminohydroxy-hydrogenation, 5, 555 reactions, 5, 555 Purines, aminooxo-reactions, 5, 557 thiation, 5, 557 Purines, bromo-synthesis, 5, 557 Purines, chloro-synthesis, 5, 573 Purines, cyano-reactions, 5, 550 Purines, dialkoxy-rearrangement, 5, 558 Purines, diazoreactions, 5, 96 Purines, dioxo-alkylation, 5, 532 Purines, N-glycosyl-, 5, 536 Purines, halo-N-alkylation, 5, 529 hydrogenolysis, 5, 562 reactions, 5, 561-562, 564 with alkoxides, 5, 563 synthesis, 5, 556 Purines, hydrazino-reactions, 5, 553 Purines, hydroxyamino-reactions, 5, 556 Purines, 8-lithiotrimethylsilyl-nucleosides alkylation, 5, 537 Purines, N-methyl-magnetic circular dichroism, 5, 523 Purines, methylthio-bromination, 5, 559 Purines, nitro-reactions, 5, 550, 551 Purines, oxo-alkylation, 5, 532 amination, 5, 557 dipole moments, 5, 522 H NMR, 5, 512 pJfa, 5, 524 reactions, 5, 556-557 with diazonium ions, 5, 538 reduction, 5, 541 thiation, 5, 557 Purines, oxohydro-IR spectra, 5, 518 Purines, selenoxo-synthesis, 5, 597 Purines, thio-acylation, 5, 559 alkylation, 5, 559 Purines, thioxo-acetylation, 5, 559... [Pg.761]

Reduction of Protein Glycosylation in Diabetes. Diabetic Care, 14(1) 68-72. [Pg.371]

Glycosyl-linkages were determined by GC-EIMS of the partially methylated alditol acetates. RG-II samples (2 mg) were methylated using sodium methyl sulfmyl carbanion and methyl iodide in dimethyl sulfoxide [24] followed by reduction of the uronosyl groups with lithium triethylborodeuteride (Superdeuteride , Aldrich) [23,25]. Methylated and carboxyl-reduced samples were then submitted to acid hydrolysis, NaBIlt reduction and acetylation, partially methylated alditol acetates being analysed by EIMS on two fused-silica capillary columns (DB-1 and DB-225) [20]. [Pg.70]

Ceriello, A., Giugliano, D., Quatraro, A., Donzella, C., Dipalo, G. and Lefebvre, P.J. (1991). Vitamin E reduction of protein glycosylation in diabetes. Diabetes Care 14, 68-72. [Pg.195]

Reaction types noted oxidation (O), reduction (R), glycosylation (G), glucuronidation (GA) and sulfation (S). [Pg.213]

The activity of PK and NRPSs is often precluded and/or followed by actions upon the natural products by modifying enzymes. There exists a first level of diversity in which the monomers for respective synthases must be created. For instance, in the case of many NRPs, noncanonical amino acids must be biosynthesized by a series of enzymes found within the biosynthetic gene cluster in order for the peptides to be available for elongation by the NRPS. A second level of molecular diversity comes into play via post-synthase modification. Examples of these activities include macrocyclization, heterocyclization, aromatization, methylation, oxidation, reduction, halogenation, and glycosylation. Finally, a third level of diversity can occur in which molecules from disparate secondary metabolic pathways may interact, such as the modification of a natural product by an isoprenoid oligomer. Here, we will cover only a small subsection of... [Pg.299]

Fungal laccases (benzenediokoxygen oxidoreductase, EC 1.10.3.2) belong to the multicopper blue phenoloxidases. They comprise glycosylated proteins expressed in multiple forms and variable molecular weight, ranging from 59 to 110 kDa. Laccase is expressed as multiple constitutive and induced isoenzymes [30, 64]. The enzyme contains four copper atoms (Cu), in different states of oxidation (I, II, III) [65], which play an important role in the catalytic mechanism. Laccase oxidizes different compounds while reducing O2 to H20, a total reduction of four electrons. [Pg.142]

Figure 7.11 Oxidation of glycoproteins with periodate, such as glycosylated antibodies, results in the formation of aldehyde groups that can be used for conjugation to dendrimers containing amine groups. Reductive amination with sodium cyanoborohydride results in coupling via secondary (or tertiary) amine bonds. Figure 7.11 Oxidation of glycoproteins with periodate, such as glycosylated antibodies, results in the formation of aldehyde groups that can be used for conjugation to dendrimers containing amine groups. Reductive amination with sodium cyanoborohydride results in coupling via secondary (or tertiary) amine bonds.
Enzymes that are glycosylated (i.e., HRP and GO) may be oxidized according to the following method to produce aldehyde groups for reductive amination coupling to an antibody molecule. [Pg.802]


See other pages where Reductive glycosylation is mentioned: [Pg.139]    [Pg.433]    [Pg.169]    [Pg.150]    [Pg.37]    [Pg.256]    [Pg.410]    [Pg.124]    [Pg.139]    [Pg.433]    [Pg.169]    [Pg.150]    [Pg.37]    [Pg.256]    [Pg.410]    [Pg.124]    [Pg.268]    [Pg.272]    [Pg.127]    [Pg.445]    [Pg.527]    [Pg.195]    [Pg.238]    [Pg.184]    [Pg.245]    [Pg.212]    [Pg.51]    [Pg.83]    [Pg.272]    [Pg.340]    [Pg.44]    [Pg.245]    [Pg.248]    [Pg.150]    [Pg.153]    [Pg.362]    [Pg.781]    [Pg.803]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



© 2024 chempedia.info