Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive phenylation

Since their discovery in 1866, it has been known that sulphoxides are reducible by zinc and acid to the conesponding sulphide [63], fhe equivalent electrochemical process cannot be characterised because sulphoxides also decrease the hydrogen overpotential [64], Dialkyl sulphoxides are not reduced in absence of protons and dimethyl sulphoxide is used as a solvent for electrochemical reduction. Phenyl methyl sulphoxide gives a single two-electron wave on polarography in both ethanol (E./, = -2.17 V vs. see) and dimethylformamide (E./, = -2.32 V vs. see), forming phenyl methyl sulphide [65],... [Pg.170]

Miyake and co-workers (40) have published a synthesis of ellipticine that features a novel reductive phenylation of nitroarenes (41) (Scheme 4). Nitration of 5,8-dimethyl-l, 2,3,4-tetrahydroisoquinoline (22) gave an inseparable mixture of nitro compounds 23. Treatment of this mixture with iron pentacarbonyl and triflic acid in the presence of benzene gave a 2 1 mixture of amines 24 and 25. Separation of these isomers and diazotization of each with nitrous acid, conversion to the azide, and thermolysis yielded ellipticine (1) and isoellipticine (27) (5,11-dimethyl-10f/-pyrido[3,4- )]carbazole), respectively, following Pd/C dehydrogenation of the initially formed nitrene insertion product (e.g., 26). The overall yield of ellipticine is 9%. [Pg.243]

Reductive phenylation. Naphthalenediols and benzene combine to afford hydroxy-tetralones. The transformation occurs when the mixtures of the aromatic compounds are treated with an excess of AlBr3. [Pg.6]

Acetophenone similarly gives an oxime, CHjCCgHjlCtNOH, of m.p. 59° owing to its lower m.p. and its greater solubility in most liquids, it is not as suitable as the phenylhydrazone for characterising the ketone. Its chief use is for the preparation of 1-phenyl-ethylamine, CHjCCgHslCHNHj, which can be readily obtained by the reduction of the oxime or by the Leuckart reaction (p. 223), and which can then be resolved by d-tartaric acid and /-malic acid into optically active forms. The optically active amine is frequently used in turn for the resolution of racemic acids. [Pg.258]

The ester and catalj st are usually employed in equimoleciilar amounts. With R =CjHs (phenyl propionate), the products are o- and p-propiophenol with R = CH3 (phenyl acetate), o- and p-hydroxyacetophenone are formed. The nature of the product is influenced by the structure of the ester, by the temperature, the solvent and the amount of aluminium chloride used generally, low reaction temperatures favour the formation of p-hydroxy ketones. It is usually possible to separate the two hydroxy ketones by fractional distillation under diminished pressure through an efficient fractionating column or by steam distillation the ortho compounds, being chelated, are more volatile in steam It may be mentioned that Clemmensen reduction (compare Section IV,6) of the hj droxy ketones affords an excellent route to the substituted phenols. [Pg.664]

But that is not the case. What the Korean lab found out was that when this procedure is performed, the OH stabilizes on the alpha carbon. That is the carbon right next to the phenyl ring. If one has any use for it as is then that is fine. But what is most preferable is to reduce the OH to get the propenylbenzene (say isoelemicin for our example). Using the simple potassium bisulfate reduction recipe, one can get rid of the OH with no problems at all. [Pg.51]

Direct Borohydride Reduction of Alcohols to Alkanes with Phosphonium Anhydride Activation N-Proovlbenzene. To a solution of 5.56 g (20 mmol) of triphenylphosphine oxide in 30mL of dry methylene chloride at CfC was added dropwise a solution of 1.57 mL (10 mmol) of triflic anhydride in 30mL of dry methylene chloride. After 15 min when the precipitate appeared, a solution of 1.36g (10 mmol) of 3-phenyl-1-propanol in 10 mL of dry methylene chloride was added and the precipitate vanished in 5 min. An amount of 1.5g (40 mmol) of sodium borohydride was added as a solid all at once and the slurry was stirred at room temperature for... [Pg.203]

It is known that tr-allylpalladium acetate is converted into allyl acetate by reductive elimination when it is treated with CO[242,243]. For this reason, the carbonylation of allylic acetates themselves is difficult. The allylic acetate 386 is carbonylated in the presence of NaBr (20-50 mol%) under severe conditions, probably via allylic bromides[244]. However, the carbonylation of 5-phenyl-2,4-pentadienyl acetate (387) was carried out in the presence of EtiN without using NaBr at 100 °C to yield methyl 6-phenyl-3,5-hexadienoate (388)[245J. The dicarbonylation of l,4-diacetoxy-2-butene to form the 3-hexenedioate also proceeds by using tetrabutylphosphonium chloride as a ligand in 49% yield[246]. [Pg.341]

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

The preparation of 5-azothiazoles uses the nucleophilic character of C-5 carbon in reaction with the appropriate diazonium salt (402, 586). These 5-azothia2oles form 1 1 complexes with Ag (587). 2-Amino-4-methyl-5-arylazothiazoles give reduction waves involving two-electron transfer the Ej/ values correlate to the angle between the thiazole and phenyl rings (588). [Pg.108]

Al,A/-diethyl-/)-phenyl-enediami 10 16 2 [93-05-0] pale yeUow 260-262 reduction of ... [Pg.253]

Electrolytic reductions generally caimot compete economically with chemical reductions of nitro compounds to amines, but they have been appHed in some specific reactions, such as the preparation of aminophenols (qv) from aromatic nitro compounds. For example, in the presence of sulfuric acid, cathodic reduction of aromatic nitro compounds with a free para-position leads to -aminophenol [123-30-8] hy rearrangement of the intermediate N-phenyl-hydroxylamine [100-65-2] (61). [Pg.263]

In equation 1, the Grignard reagent, C H MgBr, plays a dual role as reducing agent and the source of the arene compound (see Grignard reaction). The Cr(CO)g is recovered from an apparent phenyl chromium intermediate by the addition of water (19,20). Other routes to chromium hexacarbonyl are possible, and an excellent summary of chromium carbonyl and derivatives can be found in reference 2. The only access to the less stable Cr(—II) and Cr(—I) oxidation states is by reduction of Cr(CO)g. [Pg.134]

Eig. 7. CycHc voltammograms for the reduction of 1.0 mAf [2,2 -ethylene-bis(nitrilomethyHdyne)diphenolato]nickel(II) in dimethyl formamide at a glassy carbon electrode, in A, the absence, and B and C the presence of 2.0 and 5.0 mAf 6-iodo-l-phenyl-l-hexyne, respectively (14). [Pg.54]


See other pages where Reductive phenylation is mentioned: [Pg.150]    [Pg.231]    [Pg.217]    [Pg.150]    [Pg.231]    [Pg.217]    [Pg.305]    [Pg.623]    [Pg.623]    [Pg.140]    [Pg.438]    [Pg.464]    [Pg.519]    [Pg.31]    [Pg.527]    [Pg.224]    [Pg.218]    [Pg.159]    [Pg.439]    [Pg.108]    [Pg.413]    [Pg.443]    [Pg.253]    [Pg.253]    [Pg.253]    [Pg.253]    [Pg.255]    [Pg.293]    [Pg.337]    [Pg.503]    [Pg.75]    [Pg.105]    [Pg.119]    [Pg.125]    [Pg.249]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



4-Phenyl-2-butanone, electroenzymatic reduction

Isocyanates, phenyl reduction

Ketone, cyclopropyl phenyl reduction

Phenyl azide reduction

Phenyl halides, reduction

Phenyl thioethers reductive lithiation

Phenyl-azo-p-naphthol reduction

Reductive lithiation of alkyl phenyl sulfide

Reductive lithiation of phenyl sulfides

Reductive phenylation Subject

Reductive trifluoromethylations, trifluoromethyl phenyl sulfone

Selenides, acyl phenyl reductive decarboxylation

Selenides, phenyl reduction

Tin hydride, tri-n-butylreaction with acyl phenyl selenides reductive decarboxylation

© 2024 chempedia.info