Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromide reduction

One prevalent strategy for this involves tire use of a phase transfer agent, such as tetraoctyl ammonium bromide, to bring gold and silver salts into an organic phase [12, and. Reduction of tire metal salts... [Pg.2902]

A solution of cuprous bromide may be prepared either by dissolving the solid in hot constant boiling point hydrobromic acid or by refluxing a mixture of 63 g. of crystallised copper sulphate, 20 g. of copper turnings, 154 g. of sodium bromide dihydrate, 30 g. (16-3 ml.) of concentrated sulphuric acid and 1 litre of water for 3-4 hours. If the colour of the solution has not become yellowish after this period of heating, a few grams of sodium sulphite should be added to complete the reduction. [Pg.191]

Methylene bromide (CHjBfj) and methylene iodide (CHjIj) are easily prepared by the reduction of bromoform or iodoform respectively with sodium arsenite in alkaline solution ... [Pg.300]

Method 1. Prepare a solution of cuprous bromide by refluxing 31-5 g. of erystallised eopper sulphate, 10 g. of elean eopper turnings, 77 g. of crystallised sodium bromide, 15 g. (8-2 ml.) of concentrated sulphuric acid and 500 ml. of water contained in a 2 5 litre round-bottomed flask over a flame for 3-4 hours until the solution acquires a yellowish colour if the blue colour is not discharged, add a few grams of sodium bisulphite to complete the reduction. [Pg.602]

The majority of preparative methods which have been used for obtaining cyclopropane derivatives involve carbene addition to an olefmic bond, if acetylenes are used in the reaction, cyclopropenes are obtained. Heteroatom-substituted or vinyl cydopropanes come from alkenyl bromides or enol acetates (A. de Meijere, 1979 E. J. Corey, 1975 B E. Wenkert, 1970 A). The carbenes needed for cyclopropane syntheses can be obtained in situ by a-elimination of hydrogen halides with strong bases (R. Kdstcr, 1971 E.J. Corey, 1975 B), by copper catalyzed decomposition of diazo compounds (E. Wenkert, 1970 A S.D. Burke, 1979 N.J. Turro, 1966), or by reductive elimination of iodine from gem-diiodides (J. Nishimura, 1969 D. Wen-disch, 1971 J.M. Denis, 1972 H.E. Simmons, 1973 C. Girard, 1974),... [Pg.74]

Two synthetic bridged nitrogen heterocycles are also prepared on a commercial scale. The pentazocine synthesis consists of a reductive alkylation of a pyridinium ring, a remarkable and puzzling addition to the most hindered position, hydrogenation of an enamine, and acid-catalyzed substitution of a phenol derivative. The synthesis is an application of the reactivity rules discussed in the alkaloid section. The same applies for clidinium bromide. [Pg.309]

Interesting formation of the fulvene 422 takes place by the reaction of the alkenyl bromide 421 with a disubstituted alkyne[288]. The indenone 425 is prepared by the reaction of o-iodobenzaldehyde (423) with internal alkyne. The intermediate 424 is formed by oxidative addition of the C—H bond of the aldehyde and its reductive elimination affords the enone 425(289,290]. [Pg.186]

Another method for the hydrogenoiysis of aryl bromides and iodides is to use MeONa[696], The removal of chlorine and bromine from benzene rings is possible with MeOH under basic conditions by use of dippp as a ligand[697]. The reduction is explained by the formation of the phenylpalladium methoxide 812, which undergoes elimination of /i-hydrogen to form benzene, and MeOH is oxidized to formaldehyde. Based on this mechanistic consideration, reaction of alcohols with aryl halides has another application. For example, cyclohex-anol (813) is oxidized smoothly to cyclohexanone with bromobenzene under basic conditions[698]. [Pg.249]

It is known that tr-allylpalladium acetate is converted into allyl acetate by reductive elimination when it is treated with CO[242,243]. For this reason, the carbonylation of allylic acetates themselves is difficult. The allylic acetate 386 is carbonylated in the presence of NaBr (20-50 mol%) under severe conditions, probably via allylic bromides[244]. However, the carbonylation of 5-phenyl-2,4-pentadienyl acetate (387) was carried out in the presence of EtiN without using NaBr at 100 °C to yield methyl 6-phenyl-3,5-hexadienoate (388)[245J. The dicarbonylation of l,4-diacetoxy-2-butene to form the 3-hexenedioate also proceeds by using tetrabutylphosphonium chloride as a ligand in 49% yield[246]. [Pg.341]

The allylstannane 474 is prepared by the reaction of allylic acetates or phosphates with tributyltin chloride and Sml2[286,308] or electroreduction[309]. Bu-iSnAlEt2 prepared in situ is used for the preparation of the allylstannane 475. These reactions correspond to inversion of an allyl cation to an allyl anion[3l0. 311], The reaction has been applied to the reductive cyclization of the alkenyl bromide in 476 with the allylic acetate to yield 477[312]. Intramolecular coupling of the allylic acetate in 478 with aryl bromide proceeds using BuiSnAlEti (479) by in situ formation of the allylstannane 480 and its reaction with the aryl bromide via transmetallation. (Another mechanistic possibility is the formation of an arylstannane and its coupling with allylic... [Pg.353]

Mescaline a hallucinogenic amine obtained from the peyote cactus has been synthesized in two steps from 3 4 5 trimethoxybenzyl bromide The first step is nucleophilic substitution by sodium cyanide The second step is a lithium aluminum hydnde reduction What is the structure of mescaline" ... [Pg.968]

AHylestrenol (37) is prepared from (32), an intermediate in the synthesis of norethindrone. Treatment of (32) with ethanedithiol and catalytic boron trifluoride provides a thioketal. Reduction with sodium in Hquid ammonia results in the desired reductive elimination of the thioketal along with reduction of the 17-keto group. Oxidation of this alcohol with chromic acid in acetone followed by addition of aHyl magnesium bromide, completes the synthesis... [Pg.212]

Lynestrenol is the des-3-oxo derivative of norethindrone (28). It has been prepared through a similar synthetic pathway as aHylestrenol (37) (52), ie, addition of potassium acetyUde, rather than aHyl magnesium bromide, affords lynestrenol (73). Lynestrenol is also available from norethindrone (28). Reduction of the 3-keto group is accompHshed by treating norethindrone (28) with sodium borohydride in the presence of trifluoro- or trichloroacetic acid... [Pg.216]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Constmction of multilayers requires that the monolayer surface be modified to a hydroxylated one. Such surfaces can be prepared by a chemical reaction and the conversion of a nonpolar terminal group to a hydroxyl group. Examples of such reactions are the LiAlH reduction of a surface ester group (165), the hydroboration—oxidation of a terminal vinyl group (127,163), and the conversion of a surface bromide using silver chemistry (200). Once a subsequent monolayer is adsorbed on the "activated" monolayer, multilayer films may be built by repetition of this process (Fig. 8). [Pg.538]

Bromide ndIodide. The spectrophotometric determination of trace bromide concentration is based on the bromide catalysis of iodine oxidation to iodate by permanganate in acidic solution. Iodide can also be measured spectrophotometricaHy by selective oxidation to iodine by potassium peroxymonosulfate (KHSO ). The iodine reacts with colorless leucocrystal violet to produce the highly colored leucocrystal violet dye. Greater than 200 mg/L of chloride interferes with the color development. Trace concentrations of iodide are determined by its abiUty to cataly2e ceric ion reduction by arsenous acid. The reduction reaction is stopped at a specific time by the addition of ferrous ammonium sulfate. The ferrous ion is oxidi2ed to ferric ion, which then reacts with thiocyanate to produce a deep red complex. [Pg.232]


See other pages where Bromide reduction is mentioned: [Pg.253]    [Pg.253]    [Pg.265]    [Pg.275]    [Pg.301]    [Pg.65]    [Pg.255]    [Pg.268]    [Pg.215]    [Pg.226]    [Pg.249]    [Pg.250]    [Pg.573]    [Pg.213]    [Pg.215]    [Pg.215]    [Pg.68]    [Pg.473]    [Pg.91]    [Pg.244]    [Pg.322]    [Pg.28]    [Pg.436]    [Pg.439]    [Pg.29]    [Pg.536]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



4-Cyanobenzyl bromide reduction

4-Nitrobenzyl bromide reduction

Acid bromides reduction

Allyl bromides reduction

Aryl aldehydes, reductive coupling bromides

Benzyl Bromide Reductive Bromination of an Acetal

Benzyl bromide reduction

Benzyl bromide, reductive coupling

Carbon tetrachloride/bromide reduction

Cyclopropyl bromides reduction

Niobium bromides Reduction

Octyl bromide, reduction

Reduction alkyl bromides

Reduction bromide nucleoside

Reduction of alkyl bromides

Reductions palladium®) bromide

Reductive coupling bromides

Reductive coupling nickel bromide-zinc

Titanium bromide reduction

Zinc Bromide reduction

© 2024 chempedia.info