Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction, asymmetric, catalysis

Chiral oxazolines developed by Albert I. Meyers and coworkers have been employed as activating groups and/or chiral auxiliaries in nucleophilic addition and substitution reactions that lead to the asymmetric construction of carbon-carbon bonds. For example, metalation of chiral oxazoline 1 followed by alkylation and hydrolysis affords enantioenriched carboxylic acid 2. Enantioenriched dihydronaphthalenes are produced via addition of alkyllithium reagents to 1-naphthyloxazoline 3 followed by alkylation of the resulting anion with an alkyl halide to give 4, which is subjected to reductive cleavage of the oxazoline moiety to yield aldehyde 5. Chiral oxazolines have also found numerous applications as ligands in asymmetric catalysis these applications have been recently reviewed, and are not discussed in this chapter. ... [Pg.237]

The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence a catalytic asymmetric process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. This interaction is often comparable to the stabilization of a-ferrocenylcarbocations 3 (see Sect. 1) making use of the electron-donating character of the Cp2Fe moiety, but can also be reversed by the formation of feirocenium systems thereby increasing the acidity of a directly attached Lewis acid. Alternative applications in asymmetric catalysis, for which the interaction of the Fe center and the catalytic center is less distinct, have recently been summarized in excellent extensive reviews and are outside the scope of this chapter [48, 49], Moreover, related complexes in which one Cp ring has been replaced with an ri -arene ligand, and which have, for example, been utilized as catalysts for nitrate or nitrite reduction in water [50], are not covered in this chapter. [Pg.152]

Gomez Arrayas R, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45 7674—7715 Dai LX, Hou XL (2010) Chiral ferrocenes in asymmetric catalysis. Wiley-VCH, Weinheim Rigaut S, Delville MH, Losada J, Astrac D (2002) Water-soluble mono- and star-shaped hexanuclear functional organoiron catalysts for nitrate and nitrite reduction in water syntheses and electroanalytical study. Inorg Chim Acta 334 225-242... [Pg.172]

Asymmetric catalysis Reductive aldol Reductive Mannich... [Pg.114]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

The enantioselective hydrogenation of prochiral substances bearing an activated group, such as an ester, an acid or an amide, is often an important step in the industrial synthesis of fine and pharmaceutical products. In addition to the hydrogenation of /5-ketoesters into optically pure products with Raney nickel modified by tartaric acid [117], the asymmetric reduction of a-ketoesters on heterogeneous platinum catalysts modified by cinchona alkaloids (cinchonidine and cinchonine) was reported for the first time by Orito and coworkers [118-121]. Asymmetric catalysis on solid surfaces remains a very important research area for a better mechanistic understanding of the interaction between the substrate, the modifier and the catalyst [122-125], although excellent results in terms of enantiomeric excesses (up to 97%) have been obtained in the reduction of ethyl pyruvate under optimum reaction conditions with these Pt/cinchona systems [126-128],... [Pg.249]

The chiral auxiliaries anchored to the substrate, which is subjected to diastereoselective catalysis, is another factor that can control these reactions. These chiral auxiliaries should be easily removed after reduction without damaging the hydrogenated substrate. A representative example in this sense is given by Gallezot and coworkers [268], They used (-)mentoxyacetic acid and various (S)-proline derivates as chiral auxiliaries for the reduction of o-cresol and o-toluic acid on Rh/C. A successful use of proline derivates in asymmetric catalysis has also been reported by Harada and coworkers [269,270], The nature of the solvent only has a slight influence on the d.e. [271],... [Pg.521]

Key words ONIOM, hydrogenation, enantioselectivity, asymmetric catalysis, DFT, reaction mechanism, chiral phosphine, ab initio, valence bond, oxidative addition, migratory insertion, reductive elimination. [Pg.107]

Gelo-Pujic, M., Le Guyader, F. and Schlama, T., Microbial and homogenous asymmetric catalysis in the reduction of l-[3,5-bis(trifluoromethyl)phenyl]ethanone. Tetrahedron Asymm. 2006, 17, 2000-2005. [Pg.78]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]

Many of the major developments in hydrogenation chemistry in the last decade have been in the area of asymmetric catalysis, and the level of coverage in this review will reflect this important area. In preparing this review it became apparent that many specific catalytic systems may be employed for the reductions of several different classes of double-bonded substrate. To afford maximum utility to the reader as a reference text, the contents have been arranged by type of double bond reduced. [Pg.782]

The chemoenzymatic synthesis of chiral alcohols is a field of major interest within biocatalytic asymmetric conversions. A convenient access to secondary highly enan-tiomerically enriched alcohols is the usage of alcohol dehydrogenases (ADHs) (ketoreductases) for the stereoselective reduction of prochiral ketones. Here, as in many other cases in asymmetric catalysis, enzymes are not always only an alternative to chemical possibilities, but are rather complementary. Albeit biocatalysts might sometimes seem to be more environmentally friendly, asymmetric ketone reduction... [Pg.13]

Asymmetric catalysis undertook a quantum leap with the discovery of ruthenium and rhodium catalysts based on the atropisomeric bisphosphine, BINAP (3a). These catalysts have displayed remarkable versatility and enantioselectivity in the asymmetric reduction and isomerization of a,P- and y-keto esters functionalized ketones allylic alcohols and amines oc,P-unsaturated carboxylic acids and enamides. Asymmetric transformation with these catalysts has been extensively studied and reviewed.81315 3536 The key feature of BINAP is the rigidity of the ligand during coordination on a transition metal center, which is critical during enantiofacial selection of the substrate by the catalyst. Several industrial processes currently use these technologies, whereas a number of other opportunities show potential for scale up. [Pg.191]

The third part of this chapter reviews previously described catalytic asymmetric reactions that can be promoted by chiral lanthanoid complexes. Transformations such as Diels-Alder reactions, Mukaiyama aldol reactions, several types of reductions, Michael addition reactions, hydrosilylations, and hydroaminations proceed under asymmetric catalysis in the presence of chiral lanthanoid complexes. [Pg.202]

Asymmetric catalysis allows chemicals to be manufactured in their enantiomer-ically pure form and reduces derivatisation and multiple purification steps that would otherwise be required. The 2001 Nobel Prize was awarded for two of the most important asymmetric reactions hydrogenations and oxidations. A variety of ligands suitable for asymmetric reductions are available commercially including BINAP, Figure 3.16. A BINAP Rh complex is used in the commercial production of 1-menthol to enantioselectively hydrogenate an alkene bond (Lancaster, 2002). Ru BINAP complexes can be used in asymmetric reductions of carbonyl groups (Noyori, 2005 Noyori and Hashiguchi, 1997). [Pg.68]

Sih, C.J., Chen, C.S. Microbial asymmetric catalysis - enantioselection reduction of ketones. Angew. Chem. Int. Ed. Engl. 1984, 23 570-578. [Pg.84]

Fig. 30 Asymmetric aldehyde alkylation using organocatalyst 119 and reductive photoredox catalysis... Fig. 30 Asymmetric aldehyde alkylation using organocatalyst 119 and reductive photoredox catalysis...
Microbial Asymmetric Catalysis - Enantioselective Reduction of Ketones"... [Pg.551]

Catalysis in general and asymmetric catalysis in particular are at the forefront of chemical research [1], Their impact on industrial production can hardly be overestimated and is likely to increase further [2]. However, the high degree of sophistication reached in many respects may hide the simple notion that there still remain fairly large domains in preparative organic chemistry in which no catalytic alternatives to well-established stoichiometric transformations yet exist. The following account is intended to put into perspective some pioneering studies which address this problem and try to develop new concepts for metal-catalyzed reductive bond formations [3]. [Pg.123]


See other pages where Reduction, asymmetric, catalysis is mentioned: [Pg.16]    [Pg.265]    [Pg.157]    [Pg.270]    [Pg.276]    [Pg.120]    [Pg.55]    [Pg.1]    [Pg.183]    [Pg.430]    [Pg.431]    [Pg.150]    [Pg.195]    [Pg.265]    [Pg.96]    [Pg.499]    [Pg.134]    [Pg.212]    [Pg.344]    [Pg.91]    [Pg.401]    [Pg.144]    [Pg.204]    [Pg.1377]    [Pg.120]    [Pg.280]    [Pg.3]   
See also in sourсe #XX -- [ Pg.616 ]




SEARCH



Asymmetric catalysis

Asymmetric catalysis ketone reduction

Asymmetric reduction

Asymmetrical reduction

Transition metal catalysis asymmetric reduction

© 2024 chempedia.info