Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction, acid chlorides esters

Acid chlorides, R(Ar)COCl, are reduced to R(Ar)CHO by Hj/Pd(S), a moderate catalyst that does not reduce RCHO to RCHjOH (Rosenmund reduction). Acid chlorides, esters (R(Ar)COOR), and nitriles (RC N) are reduced with lithium tri-t-butoxyaluminum hydride, LiAlH[OC(CH3)3]j, at very low temperatures, followed by HjO. The net reaction is a displacement of X by H",... [Pg.319]

Methylisothiazole-5-carboxylic acid has also been prepared by alkaline hydrolysis of the 5-nitrile. The 5-acids decarboxylate readily at or near their melting points but otherwise behave normally, forming acid chlorides, esters, amides, hydra-zides, and nitriles. The esters undergo the Claisen condensation to form ]8-ketoesters, and the nitriles form thioamides with hydrogen sulfide in pyridine. An anomalous reaction is the reduction of 5-cyano-... [Pg.118]

The discovery of lithium aluminum hydride and similar compounds has made possible the direct reduction of the carboxyl group. Acid chlorides, esters, and anhydrides are similarly reduced to primary alcohols. Lactones are converted to diols." The reaction takes place readily at room temperature. The compound to be reduced is added to an ethereal solution of the reagent, and the resulting alcoholate is hydrolyzed by acid. [Pg.529]

Until about 1950, reduction of carboxylic acids and their derivatives to aldehydes was not straightforward, and even one of the best methods, the Rosenmund hydrogenation of acid chlorides, required very careful control of both the reaction conditions and preparation of catalyst. The advent of aluminum and boron hydrides and their ready commercial availability transformeKl the situation to such an extent that the formation of aldehydes from carboxylic acids, acid chlorides, esters, amides, nitriles and similar groups in the presence of other reducible functional groups has become a relatively easy operation on both small and large scale. [Pg.259]

The reagent is used for the reduction of aldehydes, ketones, acid anhydrides, and acid chlorides. Esters and nitriles are reduced only slowly at elevated temperatures. H. C. Brown, H. I. Schlesinger, I. Sheft, and D. M. Ritter, Am. Sac., 75, 192 (1953)... [Pg.1288]

Villalgordo et al. [22, 23] as well as Gayo and Suto [25] developed a strategy to cleave pyrimidines from the solid support. After oxidation of the thioether-linkage 17, aromatic substitution of the sulfonyl unit was performed with different N-nucleophiles as amines and azides to give free amino- or azido-pyrimidines 19 (Scheme 16.5). To demonstrate the stability of the linker, the resin-bound derivatives were subjected to different reactions such as saponification, ester reduction, acid chloride formation or Mitsunobu alkylation. A similar approach was presented later on by Hwang and Gong in the SPOS of 2-aminobenzoxazoles [26]. [Pg.444]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

Hydroxyalkylthiazoles are also obtained by cyclization or from alkoxyalkyl-thiazoles by hydrolysis (36, 44, 45, 52, 55-57) and by lithium aluminium hydride reduction of the esters of thiazolecarboxylic acids (58-60) or of the thiazoleacetic adds. The Cannizzaro reaction of 4-thiazolealdehyde gives 4-(hydroxymethyl)-thiazole (53). The main reactions of hydroxyalkyl thiazoles are the synthesis of halogenated derivatives by the action of hydrobroraic acid (55, 61-63), thionyl chloride (44, 45, 63-66), phosphoryl chloride (52, 62, 67), phosphorus penta-chloride (58), tribromide (38, 68), esterification (58, 68-71), and elimination that leads to the alkenylthiazoles (49, 72). [Pg.341]

In general, if the desired carbon—phosphoms skeleton is available in an oxidi2ed form, reduction with lithium aluminum hydride is a powerful technique for the production of primary and secondary phosphines. The method is appHcable to halophosphines, phosphonic and phosphinic acids as well as thein esters, and acid chlorides. Tertiary and secondary phosphine oxides can be reduced to the phosphines. [Pg.379]

Claisen ester condensation, 6, 279 Thiazolecarboxylic acid chlorides reactions, 6, 279-280 Thiazolecarboxylic acid hydrazides synthesis, 6, 280 Thiazolecarboxylic acids acidity, 6, 279 decarboxylation, 6, 279 reactions, S, 92 6, 274 Thiazole-2-carboxylic acids decarboxylation, S, 92 Thiazole-4-carboxylic acids stability, S, 92 Thiazole-5-carboxylic acids decarboxylation, S, 92 Thiazole-4,5-dicarboxylic acid, 2-amino-diethyl ester reduction, 6, 279 Thiazole-4,5-dicarboxylic acids diethyl ester saponification, 6, 279 Thiazolediones diazo coupling, 5, 59 Thiazoles, 6, 235-331 ab initio calculations, 6, 236 acidity, S, 49 acylation, 6, 256 alkylation, S, 58, 73 6, 253, 256 analytical uses, 6, 328 antifogging agents... [Pg.873]

Contrary to Brown s results, a later paper claims that chloral, esters and acid chlorides are readily reduced by diborane in tetrahydrofuran it is suggested that diborane can complex with tetrahydrofuran before effecting reduction. [Pg.90]

This is one of the few methods available for the direct and efficient conversion of an acid, via the acid chloride, to an ortho ester. The preparation of the oxetane is straightforward, and a large number of oxetanes have been prepared [triol, (EtO)2CO, KOH]." In addition, the -butyl analogue has been used for the protection of acids. During the course of a borane reduction, the ortho ester was reduced to form a ketal. This was attributed to an intramolecular delivery of the hydride. ... [Pg.438]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

A substituted benzoic acid serves as precursor for the nontricyclic antidepressant bipena-mol (175). Selective. saponification of ester 171 afford.s the half-acid 172. Reaction of the acid chloride derived from this intermediate (173) with ammonia gives the amide 174. Reduction of the last by means of lithium aluminum hydride gives bipenamol (175) [44]. [Pg.45]

The complex thioamide lolrestat (8) is an inhibitor of aldose reductase. This enzyme catalyzes the reduction of glucose to sorbitol. The enzyme is not very active, but in diabetic individuals where blood glucose levels can. spike to quite high levels in tissues where insulin is not required for glucose uptake (nerve, kidney, retina and lens) sorbitol is formed by the action of aldose reductase and contributes to diabetic complications very prominent among which are eye problems (diabetic retinopathy). Tolrestat is intended for oral administration to prevent this. One of its syntheses proceeds by conversion of 6-methoxy-5-(trifluoroniethyl)naphthalene-l-carboxyl-ic acid (6) to its acid chloride followed by carboxamide formation (7) with methyl N-methyl sarcosinate. Reaction of amide 7 with phosphorous pentasulfide produces the methyl ester thioamide which, on treatment with KOH, hydrolyzes to tolrestat (8) 2[. [Pg.56]

Anhydrides are reduced with relative ease. McAlees and McCrindle 20) established the following increasing order of difficulty for various carbonyls acid chlorides > aldehydes, ketones > anhydrides > esters > carboxylic acids > amides. Reduction may proceed by 1,2-addilion of hydrogen or by cleavage of an oxygen-carbonyl bond. If 1,2-addition to the carbonyl occurs, as in the presence of strong protic acids over palladium, 1,1-diesters are formed by acylation 26). [Pg.79]

Aldehydes and ketones are among the most important of ail compounds, both in biochemistry and in the chemical industry. AUdehydes are normally prepared in the laboratory by oxidation of primary alcohols or by partial reduction of esters. Ketones are similarly prepared by oxidation of secondary alcohols or by addition of diorganocopper reagents to acid chlorides. [Pg.736]

Acid halides are among the most reactive of carboxylic acid derivatives and can be converted into many other kinds of compounds by nucleophilic acyl substitution mechanisms. The halogen can be replaced by -OH to yield an acid, by —OCOR to yield an anhydride, by -OR to yield an ester, or by -NH2 to yield an amide. In addition, the reduction of an acid halide yields a primary alcohol, and reaction with a Grignard reagent yields a tertiary alcohol. Although the reactions we ll be discussing in this section are illustrated only for acid chlorides, similar processes take place with other acid halides. [Pg.800]

The mechanism of ester (and lactone) reduction is similar to that of acid chloride reduction in that a hydride ion first adds to the carbonyl group, followed by elimination of alkoxide ion to yield an aldehyde. Further reduction of the aldehyde gives the primary alcohol. [Pg.812]

Docosanedioic acid has been prepared by Wolff-Kishner reduction of 6,17-diketodocosanedioic acid, formed by reaction of the half-ester acid chloride of adipic acid with the a,co-cadmium derivative of decane (%26 overall yield).3 Reduction of Wolff-Kishner method, followed by simultaneous reduction and desulfurization with Raney nickel of the 2,5-bis(co-carboxyoctyl)thiophene pro-... [Pg.38]

By the way, trifluoroacetaldehyde is a versatile fluoro building block. However the chemical or electrochemical oxidative transformation of trifluoro-ethanol to trifluoroacetaldehyde has been unsuccessful. Trifluoroacetaldehyde is therefore generally produced by the reduction of trifluoroacetic acid ester or acid chloride using an excess of LAH. The anodic substitution at fluoroaikyl phenyl sulfides is a useful alternative because it realizes the transformation of economical trifluoroethanol to highly valuable trifluoroacetaldehyde equivalents as shown in Scheme 6.5. [Pg.30]

ALDEHYDES BY OXIDATION OF TERMINAL OLEFINS WITH CHROMYL CHLORIDE 2,4,4-TRIMETHYL-PENTANAL, 51, 4 ALDEHYDES FROM ACID CHLORIDES BY MODIFIED ROSENMUND REDUCTION 3,4,5—TRIMETHOXYBENZ-ALDEHYDE, 51, 8 ALDEHYDES FROM ACID CHLORIDES BY REDUCTION OF ESTER MESYLATES WITH SODIUM BOROHY-DRIDE CYCLOBUTANECARBOXAL-DEHYDE, 51, 11... [Pg.54]

Reaction of D-glucono-1,4-lactone with 2,2-dimethoxypropane-tin(II) chloride yields the 5,6-0-isopropylidene derivative 13, which on periodate oxidation afforded 2,3-0-isopropylidene-D-glyceraldehyde (21). However, the acid-catalyzed isopropylidenation of D-glucono-1,5-lactone with 2,2-dimethoxypropane afforded methyl 3,4 5,6-di-0-isopropylidene-D-gluco-nate (14) as the main product (22). Reduction of the ester function gave... [Pg.127]

Kinetic studies established that tetra-n-butylammonium borohydride in dichloromethane was a very effective reducing agent and that, by using stoichiometric amounts of the ammonium salt under homogeneous conditions, the relative case of reduction of various classes of carbonyl compounds was the same as that recorded for the sodium salt in a hydroxylic solvent, i.e. acid chlorides aldehydes > ketones esters. However, the reactivities, ranging from rapid reduction of acid chlorides at -780 C to incomplete reduction of esters at four days at 250 C, indicated the greater selectivity of the ammonium salts, compared with sodium borohydride [9], particularly as, under these conditions, conjugated C=C double bonds are not reduced. [Pg.478]

Cagniant and Cagniant have reported that succinoylation of benzo[6]thiophene under Friedel-Crafts conditions yields a separable mixture of the y-ketobutyric acids 42a and 43a in a ratio of 9 1 (combined yield 85%). Huang-Minlon reduction of 42a to the butyric acid (90%) followed by cyclization of the derived acid chloride (90%) was reported to yield 4-keto-l,2,3,4-tetrahydrodibenzothiophene (44a) (69% overall). Likewise, acylation of benzo[6]thiophene with the ester chloride of succinic acid in carbon disulfide-aluminum chloride gave a separable mixture (80%) of the 2- and 3-y-ketobutyric esters. Two alternative... [Pg.231]


See other pages where Reduction, acid chlorides esters is mentioned: [Pg.118]    [Pg.237]    [Pg.67]    [Pg.161]    [Pg.29]    [Pg.218]    [Pg.62]    [Pg.103]    [Pg.10]    [Pg.233]    [Pg.429]    [Pg.44]    [Pg.401]    [Pg.6]    [Pg.140]    [Pg.810]    [Pg.89]    [Pg.208]    [Pg.29]   
See also in sourсe #XX -- [ Pg.512 , Pg.669 , Pg.670 ]




SEARCH



Acid chlorides reduction

Chlorides reduction

Esters reduction

Reduction acid esters

Reduction of acid chlorides and esters

© 2024 chempedia.info