Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Keto reductases

The NAD- and NADP-dependent dehydrogenases catalyze at least six different types of reactions simple hydride transfer, deamination of an amino acid to form an a-keto acid, oxidation of /3-hydroxy acids followed by decarboxylation of the /3-keto acid intermediate, oxidation of aldehydes, reduction of isolated double bonds, and the oxidation of carbon-nitrogen bonds (as with dihydrofolate reductase). [Pg.590]

Steps 6-8 of Figure 29.5 Reduction and Dehydration The ketone carbonyl group in acetoacetyl ACP is next reduced to the alcohol /S-hydroxybutyry] ACP by yS-keto thioester reductase and NADPH, a reducing coenzyme closely related to NADH. R Stereochemistry results at the newly formed chirality center in the /3-hydroxy thioester product. (Note that the systematic name of a butyryl group is biitanoyl.)... [Pg.1142]

A representative set of a- and -keto esters was also tested as substrates (total 11) for each purified fusion protein (Figure 8.13b,c) [9bj. The stereoselectivities of -keto ester reductions depended both on the identity of the enzyme and the substrate stmcture, and some reductases yielded both l- and o-alcohols with high stereoselectivities. While a-keto esters were generally reduced with lower enantioselec-tivities, it was possible to identify pairs of yeast reductases that delivered both alcohol antipodes in optically pure form. These results demonstrate the power of genomic fusion protein libraries to identify appropriate biocatalysts rapidly and expedite process development. [Pg.201]

Baker s yeast has been widely used for the reduction of ketones. The substrate specificity and enantioselectivity of the carbonyl reductase from baker s yeast, which is known to catalyze the reduction of P-keto ester to L-hydroxyester (L2-enzyme) [15], was investigated, and the enzyme was found to reduce chloro-, acetoxy ketones with high enantioselectivity (Figure 8.32) [24aj. [Pg.218]

Mutation of the dihydrolipoate reductase component impairs decarboxylation of branched-chain a-keto acids, of pyruvate, and of a-ketoglutarate. In intermittent branched-chain ketonuria, the a-keto acid decarboxylase retains some activity, and symptoms occur later in life. The impaired enzyme in isovaleric acidemia is isovaleryl-CoA dehydrogenase (reaction 3, Figure 30-19). Vomiting, acidosis, and coma follow ingestion of excess protein. Accumulated... [Pg.259]

An unusual reaction was been observed in the reaction of old yellow enzyme with a,(3-unsat-urated ketones. A dismutation took place under aerobic or anaerobic conditions, with the formation from cyclohex-l-keto-2-ene of the corresponding phenol and cyclohexanone, and an analogous reaction from representative cyclodec-3-keto-4-enes—putatively by hydride-ion transfer (Vaz et al. 1995). Reduction of the double bond in a,p-unsaturated ketones has been observed, and the enone reductases from Saccharomyces cerevisiae have been purified and characterized. They are able to carry out reduction of the C=C bonds in aliphatic aldehydes and ketones, and ring double bonds in cyclohexenones (Wanner and Tressel 1998). Reductions of steroid l,4-diene-3-ones can be mediated by the related old yellow enzyme and pentaerythritol tetranitrate reductase, for example, androsta-A -3,17-dione to androsta-A -3,17-dione (Vaz etal. 1995) and prednisone to pregna-A -17a, 20-diol-3,ll,20-trione (Barna et al. 2001) respectively. [Pg.339]

Figure 7.13 Bioreduction of cyclic /3-keto esters by baker s yeast reductases... Figure 7.13 Bioreduction of cyclic /3-keto esters by baker s yeast reductases...
Machielsen, R., Uria, A.R., Kengen, S.W.M. and van der Oost, J. (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Applied and Environmental Microbiology, 72 (1), 233-238. [Pg.165]

In the synthesis route from acetyl-CoA to poly(3HB), at least three steps and three enzymes are involved (Fig. 1). The first step is catalyzed by the 3-keto-thiolase (EC 2.3.1.9) which reversibly links two acetyl-CoA moieties to aceto-acetyl-CoA in a Claisen-condensation. The conversion of acetoacetyl-CoA into D-(-)-3-hydroxybutyryl-CoA can be mediated by a reductase (step 2) or via a sequence catalyzed by a reductase (step 4) and two hydratases (steps 5,6). The last step, i.e., the polymerization, is catalyzed by a polymerase (step 3). This... [Pg.126]

The peptide sequences obtained for codeinone reductase aligned well with the amino acid sequences for 6 -deoxychalcone synthase (chalcone reductase) from alfalfa, Glycerrhiza, and soybean. Knowledge of the relative positions of the peptides allowed for a quick RT-PCR based isolation of cDNAs encoding codeinone reductase from P. somniferum. The codeinone reductase isoforms are 53 % identical to chalcone reductase from soybean.25 By sequence comparison, both codeinone reductase and chalcone reductase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism. Six alleles encoding codeinone... [Pg.172]

FIGURE 5.1 Reduction of specific substrates for aldo/keto reductases. [Pg.110]

Molowa DT, Wrighton SA, Blanke RV, et al. 1986b. Characterization of a unique aldo-keto reductase responsible for the reduction of chlordecone in the liver of the gerbil and man. J Toxicol Environ Health 17 375-384. [Pg.274]

A further remarkable finding in the hydrolysis of aflatoxin B1 exo-8,9-epoxide is the relative instability of the dihydrodiol, which under basic conditions exists in equilibrium with an aflatoxin dialdehyde, more precisely a furofuran-ring-opened oxy anionic a-hydroxy dialdehyde (10.134, Fig. 10.30). The dihydrodiol is the predominant or exclusive species at pH < 7, whereas this is true for the dialdehyde at pH >9, the pK value of the equilibrium being 8.2 [204], The dialdehyde is known to form Schiff bases with primary amino groups leading to protein adducts. However, the slow rate of dialdehyde formation at physiological pH and its reduction by rat and human aldo-keto reductases cast doubts on the toxicological relevance of this pathway [206]. [Pg.666]

This enzyme [EC 1.17.1.1], also known as CDP-4-keto-6-deoxyglucose reductase, catalyzes the reversible reaction of CDP-4-dehydro-3,6-dideoxy-D-glucose with NAD(P)+ and water to produce CDP-4-dehydro-6-deoxy-D-glucose and NAD(P)H. [Pg.122]


See other pages where Keto reductases is mentioned: [Pg.97]    [Pg.153]    [Pg.821]    [Pg.825]    [Pg.826]    [Pg.200]    [Pg.201]    [Pg.203]    [Pg.249]    [Pg.67]    [Pg.140]    [Pg.144]    [Pg.238]    [Pg.269]    [Pg.289]    [Pg.59]    [Pg.61]    [Pg.166]    [Pg.113]    [Pg.109]    [Pg.109]    [Pg.113]    [Pg.116]    [Pg.348]    [Pg.678]    [Pg.70]    [Pg.117]    [Pg.121]    [Pg.27]    [Pg.63]    [Pg.132]   
See also in sourсe #XX -- [ Pg.402 , Pg.403 , Pg.407 , Pg.408 , Pg.409 , Pg.410 , Pg.411 , Pg.412 , Pg.413 , Pg.414 , Pg.415 , Pg.416 , Pg.417 , Pg.418 , Pg.463 ]




SEARCH



Aldo-Keto Reductases (AKR)

Aldo-keto-reductase enzymes

Aldo/keto reductase

Keto reductase, enzyme

Keto-6-phosphogluconate reductase

Keto-6-phosphogluconate reductase and

P-keto ester reductase

Reductive enzymes aldo/keto reductases

Sterol 3-keto reductase

© 2024 chempedia.info