Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous redox reaction

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

S.3.3 Electrocatalytic Modified Electrodes Often the desired redox reaction at the bare electrode involves slow electron-transfer kinetics and therefore occurs at an appreciable rate only at potentials substantially higher than its thermodynamic redox potential. Such reactions can be catalyzed by attaching to the surface a suitable electron transfer mediator (45,46). Knowledge of homogeneous solution kinetics is often used to select the surface-bound catalyst. The function of the mediator is to facilitate the charge transfer between the analyte and the electrode. In most cases the mediated reaction sequence (e.g., for a reduction process) can be described by... [Pg.121]

Attempts were made to quantitatively treat the elementary process in electrode reactions since the 1920s by J. A. V. Butler (the transfer of a metal ion from the solution into a metal lattice) and by J. Horiuti and M. Polanyi (the reduction of the oxonium ion with formation of a hydrogen atom adsorbed on the electrode). In its initial form, the theory of the elementary process of electron transfer was presented by R. Gurney, J. B. E. Randles, and H. Gerischer. Fundamental work on electron transfer in polar media, namely, in a homogeneous redox reaction as well as in the elementary step in the electrode reaction was made by R. A. Marcus (Nobel Prize for Chemistry, 1992), R. R. Dogonadze, and V. G. Levich. [Pg.278]

The participation of 5 molecules in homogeneous redox processes is mainly controlled by their short lifetimes. The lifetime of 5 is shortened by a bimolecular redox reaction (5.10.3) or (5.10.4) as follows ... [Pg.406]

A more interesting situation is found when the homogeneous redox reaction is combined with a chemical reaction between the electrocatalyst and the substrate. In this case, the catalytic process is called chemical catalysis. 3 This mechanism is depicted in Scheme 2 for reduction. The coupling of the electron transfer and the chemical reaction takes place via an inner-sphere mechanism and involves the formation of a catalyst-substrate [MC-S] complex. Here the selectivity of the mechanism is determined by the chemical step. Metal complexes are ideal candidates... [Pg.472]

As discussed already in Chapter 7, redox reactions constitute a second class of geochemical reactions that in many cases proceed too slowly in the natural environment to attain equilibrium. The kinetics of redox reactions, both homogeneous and those catalyzed on a mineral surface are considered in detail in the next chapter, Chapter 17, and the role microbial life plays in catalyzing redox reactions is discussed in Chapter 18. [Pg.232]

The rate law is of the form of Equation 17.5 in the previous section, and the equivalent law giving the net reaction rate is Equation 17.9. We can, therefore, account for the effect of catalysis on a redox reaction using the same formulation as the case of homogeneous reaction, if we include surface complexes among the promoting and inhibiting species. In Chapter 28, we consider in detail how this law can be integrated into a reaction path simulation. [Pg.250]

Redox reactions in the geochemical environment, as discussed in previous chapters (Chapters 7 and 17), are commonly in disequilibrium at low temperature, their progress described by kinetic rate laws. The reactions may proceed in solution homogeneously or be catalyzed on the surface of minerals or organic matter. In a great many cases, however, they are promoted by the enzymes of the ambient microbial community. [Pg.257]

Ion-pairing effects may considerably influence disproportionation mechanisms that involve homogeneous redox reactions of anions to their respective dianionic and neutral species (Eq. 4) [52, 53],... [Pg.98]

Values of A , and k may be extracted from the polarographic data, although the treatment is complex. Examples of its use to measure the rate constants for certain redox reactions are given in Refs. 339 and 340 which should be consulted for full experimental details. The values obtained are in reasonable agreement with those from stopped-flow and other methods. The technique has still not been used much to collect rate constants for homogenous reactions. The availability of ultramicroelectrodes has enabled cyclic voltammograms to be recorded at speeds as high as 10 Vs". Transients with very short lifetimes (< ps) and their reaction rates may be characterised. ... [Pg.175]

As for chemical reactions, the reduction/oxidation (redox) reactions in an homogeneous medium (i.e., in the bulk of the solution) have been experimentally studied with proper intensity only in the past decades. There has been some development of the bulk reactions. However, as earlier, a comparison of the same compound in chemical and electrochemical electron/charge-transfer reactions is still of current interest. Such a comparison is made in this section. The examples offered are intended to invoke novel interpretations or discover new colors in pictures, which have already been drawn. [Pg.96]

Mixing time 6 is the time necessary to completely homogenize an admixture with the liquid contents of the vessel. It can easily be determined visually by a decolorization reaction (neutralization, redox reaction in the presence of a color indicator). The relevance list of this task consists of the target quantity (mixing time 6) and of the same parameters as in the case of mixing power— on condition that (contrary to Example 3) both liquids have similar physical properties ... [Pg.33]

The net result of a photochemical redox reaction often gives very little information on the quantum yield of the primary electron transfer reaction since this is in many cases compensated by reverse electron transfer between the primary reaction products. This is equally so in homogeneous as well as in heterogeneous reactions. While the reverse process in homogeneous reactions can only by suppressed by consecutive irreversible chemical steps, one has a chance of preventing the reverse reaction in heterogeneous electron transfer processes by applying suitable electric fields. We shall see that this can best be done with semiconductor or insulator electrodes and that there it is possible to study photochemical primary processes with the help of such electrochemical techniques 5-G>7>. [Pg.33]

As schematically demonstrated in Fig. 1, the indirect electrolysis combines a heterogeneous step, that is the formation and regeneration of the redox-catalyst (Med = mediator) in its active form, with the homogeneous redox reaction of the substrate involving the active mediator. [Pg.3]

In direct as well as in indirect electrolyses the burden for the environment by spent reagent is very small. In homogeneous redox reactions with stoichiometric quantities of the reagent, it is intolerably high in most cases. For example, it is unthinkable nowadays to dump spent manganese(II) or chromium(III). [Pg.7]

A special disadvantage is connected with homogeneous redox reactions without regeneration The concentration ratios are changing drastically during the reaction. In indirect electrolyses it is, however, easy to maintain the optimum concentrations. In direct electrolyses the steep concentration gradients in front of the electrode surface can adversely affect some types of reactions. [Pg.7]

In indirect electrolyses the redox catalyst occupies a key position, as it takes part in the heterogeneous as well as in the homogeneous redox reaction. To be suitable for both reactions, the mediators have to fulfill the following conditions ... [Pg.8]

Electron exchange with the electrode as well as the redox reaction with the substrate have to be rapid and reversible. Inhibition of the electrode reaction or slow homogeneous redox reactions will prolong the time for turnover drastically and thus will afford larger electrode surfaces and thereby larger investments. Besides that, side reactions will often be favored. [Pg.8]

If, in indirect electrolyses, the homogeneous reaction step is a chemical step combined with a redox reaction (mechanism B), some more advantages are obtained ... [Pg.10]

Comparison of the Rates of Homogeneous and Heterogeneous Redox Reactions... [Pg.153]

Theoretical treatments of charge transfer at electrodes were developed by Gurney, Horiuti, and Eyring and the more recent work of Gerischer, Marcus, Hush, and Levich, among others, permitted the study of simple redox electrode reactions under the same theoretical framework developed for homogeneous redox reactions in solution. [Pg.1]


See other pages where Homogeneous redox reaction is mentioned: [Pg.507]    [Pg.181]    [Pg.152]    [Pg.501]    [Pg.408]    [Pg.5]    [Pg.472]    [Pg.188]    [Pg.62]    [Pg.706]    [Pg.366]    [Pg.14]    [Pg.190]    [Pg.7]    [Pg.27]    [Pg.98]    [Pg.103]    [Pg.69]    [Pg.71]    [Pg.95]    [Pg.214]    [Pg.217]    [Pg.128]    [Pg.6]    [Pg.290]    [Pg.8]   
See also in sourсe #XX -- [ Pg.214 , Pg.216 ]




SEARCH



Homogeneous reactions

Homogeneous redox reaction rates

Homogenous reactions

Reaction homogeneous reactions

Transmission Coefficient, k, for Homogeneous Redox Reactions

© 2024 chempedia.info