Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potentials, stabilization

The search for molecular components performing as energy or electron transfer photosensitizers is directed toward the identification of species having reversible redox behaviour, suitable ground and excited state redox potentials, stability towards thermal and... [Pg.217]

Make initial redox characterization such as the redox potentials, stability of different oxidation states, and for qualitative investigation of chemical reactions that accompany electron transfer... [Pg.288]

Redox potential Stability of CIT/MIT based biocides Stability of BIT based biocides... [Pg.239]

Stannate(II) ions are powerful reducing agents. Since, for tin, the stability of oxidation state -b4 is greater than that of oxidation state -b2, tin(II) always has reducing properties, but these are greater in alkaline conditions than in acid (an example of the effect of pH on the redox potential, p. 101). [Pg.192]

MV Botuyan, A Toy-Palmer, J Chung, RC Blake II, P Beroza, DA Case. NMR solution structure of Cu(I) rusticyanm from Thiobacillus feiTooxidans Structural basis of the extreme acid stability and redox potential. J Mol Biol 263 752-767, 1996. [Pg.414]

Variamine blue (C.I. 37255). The end point in an EDTA titration may sometimes be detected by changes in redox potential, and hence by the use of appropriate redox indicators. An excellent example is variamine blue (4-methoxy-4 -aminodiphenylamine), which may be employed in the complexometric titration of iron(III). When a mixture of iron(II) and (III) is titrated with EDTA the latter disappears first. As soon as an amount of the complexing agent equivalent to the concentration of iron(III) has been added, pFe(III) increases abruptly and consequently there is a sudden decrease in the redox potential (compare Section 2.33) the end point can therefore be detected either potentiometrically or with a redox indicator (10.91). The stability constant of the iron(III) complex FeY- (EDTA = Na2H2Y) is about 1025 and that of the iron(II) complex FeY2 - is 1014 approximate calculations show that the change of redox potential is about 600 millivolts at pH = 2 and that this will be almost independent of the concentration of iron(II) present. The jump in redox potential will also be obtained if no iron(II) salt is actually added, since the extremely minute amount of iron(II) necessary is always present in any pure iron(III) salt. [Pg.320]

A further important feature of HMPA is its stabilizing effect on the Redox potential of [Fe(CO)4]2 by ion solvation. In less polar solvents, electron-transfer reactions take place and [Fe(CO)4]2 is oxidized to [HFe3(CO)iThis redox reaction is suppressed in HMPA. [Pg.12]

In Figure 2 the solubility and speciation of plutonium have been calculated, using stability data for the hydroxy and carbonate complexes in Table III and standard potentials from Table IV, for the waters indicted in Figure 2. Here, the various carbonate concentrations would correspond to an open system in equilibrium with air (b) and closed systems with a total carbonate concentration of 30 mg/liter (c,e) and 485 mg/liter (d,f), respectively. The two redox potentials would roughly correspond to water in equilibrium wit air (a-d cf 50) and systems buffered by an Fe(III)(s)/Fe(II)(s)-equilibrium (e,f), respectively. Thus, the natural span of carbonate concentrations and redox conditions is illustrated. [Pg.284]

Similar effects are observed in the iron complexes of Eqs. (9.13) and (9.14). The charge on the negatively charged ligands dominates the redox potential, and we observe stabilization of the iron(iii) state. The complexes are high-spin in both the oxidation states. The importance of the low-spin configuration (as in our discussion of the cobalt complexes) is seen with the complex ions [Fe(CN)6] and [Fe(CN)6] (Fq. 9.15), both of which are low-spin. [Pg.179]

Cathodic electrodeposition of microcrystalline cadmium-zinc selenide (Cdi i Zn i Se CZS) films has been reported from selenite and selenosulfate baths [125, 126]. When applied for CZS, the typical electrocrystallization process from acidic solutions involves the underpotential reduction of at least one of the metal ion species (the less noble zinc). However, the direct formation of the alloy in this manner is problematic, basically due to a large difference between the redox potentials of and Cd " couples [127]. In solutions containing both zinc and cadmium ions, Cd will deposit preferentially because of its more positive potential, thus leading to free CdSe phase. This is true even if the cations are complexed since the stability constants of cadmium and zinc with various complexants are similar. Notwithstanding, films electrodeposited from typical solutions have been used to study the molar fraction dependence of the CZS band gap energy in the light of photoelectrochemical measurements, along with considerations within the virtual crystal approximation [128]. [Pg.107]

Heterogeneous ET reactions at polarizable liquid-liquid interfaces have been mainly approached from current potential relationships. In this respect, a rather important issue is to minimize the contribution of ion-transfer reactions to the current responses associated with the ET step. This requirement has been recognized by several authors [43,62,67-72]. Firstly, reactants and products should remain in their respective phases within the potential range where the ET process takes place. In addition to redox stability, the supporting electrolytes should also provide an appropriate potential window for the redox reaction. According to Eqs. (2) and (3), the redox potentials of the species involved in the ET should match in a way that the formal electron-transfer potential occurs within the potential window established by the transfer of the ionic species present at the liquid-liquid junction. The results shown in Figs. 1 and 2 provide an example of voltammetric ET responses when the above conditions are fulfilled. A difference of approximately 150 mV is observed between Ao et A" (.+. ... [Pg.199]

DCE interface in the presence of TPBCl [43,82]. The accumulation of products of the redox reactions were followed by spectrophotometry in situ, and quantitative relationships were obtained between the accumulation of products and the charge transfer across the interface. These results confirmed the higher stability of this anion in comparison to TPB . It was also reported that the redox potential of TPBCP is 0.51V more positive than (see Fig. 3). However, the redox stability of the chlorinated derivative of tetra-phenylborate is not sufficient in the presence of highly reactive species such as photoex-cited water-soluble porphyrins. Fermin et al. have shown that TPBCP can be oxidized by adsorbed zinc tetrakis-(carboxyphenyl)porphyrin at the water-DCE interface under illumination [50]. Under these conditions, the fully fluorinated derivative TPFB has proved to be extremely stable and consequently ideal for photoinduced ET studies [49,83]. Another anion which exhibits high redox stability is PFg- however, its solubility in the water phase restricts the positive end of the ideally polarizable window to < —0.2V [85]. [Pg.200]

In general, thermodynamic stability of a mixed-valence dinuclear complex, which is denoted as a combination of reduced (Red) and oxidized (Ox) sites, Red-Ox, is exhibited as a difference in redox potentials AE° = E°(Ox-Ox/Red-Ox) - °(Red-Ox/Red -Red). This difference is related to the comproportionation constant, Kc, defined in Eq. (1) ... [Pg.52]

As shown in Table 1, the introduction of an electron-withdrawing group raises the redox potential and stabilizes the leuco against air oxidation. In one extreme case, this stabilization has become so efficient that leuco 13o is too stable to be oxidized back to the dye, thus severely limiting its usefulness as an imaging material. [Pg.72]

Table 6.2 Apparent formal redox potentials of systems present in the electron-transfer chain (pH = 7). It should be noted that the potential values were obtained in the homogeneous phase. Due to stabilization in a membrane, the oxidation-reduction properties vary so that the data listed below are of orientation character... Table 6.2 Apparent formal redox potentials of systems present in the electron-transfer chain (pH = 7). It should be noted that the potential values were obtained in the homogeneous phase. Due to stabilization in a membrane, the oxidation-reduction properties vary so that the data listed below are of orientation character...
An EPR study of the monomeric 02 adducts of the Schiff base complexes of Co(bzacen)(py) (71a) and the thiobenzoyl analog Co(Sbzacen)(py) (71b) characterized the five-coordinate mono (pyridine) precursors and the six-coordinate 02 adducts.327 Increased covalency in the Co—S bonds was seen in the EPR parameters, indicative of 7r-backbonding. Substituent effects on the aromatic rings had no effect on the EPR spectra, but these were reflected in the observed redox potentials. Furthermore, the S-donors stabilize the Co ion in lower oxidation states, which was consistent with destabilization of the 02 adducts. [Pg.35]

With respect to the ring size, it has been stated that neither the redox potentials nor the half-lives of the Ni species are directly correlated to the cavity of the macrocyclic ligand, but the redox potentials are dependent on solvation effects.139 The effect of fused benzene rings and ring conformation has been monitored.140 In Ni complexes of fluorine-containing cyclams (25) the higher oxidation state becomes successively destabilized with respect to Ni, while the lower oxidation state (i.e., Ni1) becomes successively stabilized.141... [Pg.256]


See other pages where Redox potentials, stabilization is mentioned: [Pg.40]    [Pg.842]    [Pg.40]    [Pg.842]    [Pg.488]    [Pg.385]    [Pg.265]    [Pg.301]    [Pg.127]    [Pg.137]    [Pg.362]    [Pg.114]    [Pg.217]    [Pg.241]    [Pg.241]    [Pg.243]    [Pg.253]    [Pg.255]    [Pg.259]    [Pg.267]    [Pg.282]    [Pg.402]    [Pg.87]    [Pg.5]    [Pg.11]    [Pg.66]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.261]    [Pg.267]    [Pg.289]    [Pg.392]    [Pg.392]    [Pg.750]   


SEARCH



Redox potentials

Redox potentials, stabilization complex formation

Redox stability

Redox stability stabilization

Stability redox potential

Stabilizing potential

© 2024 chempedia.info