Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reagents boron trifluoride

The acylation of ketones with acid anhydrides may be effected by means of the acid reagent boron trifluoride, for example ... [Pg.861]

Organocopper reagents-Boron trifluoride etherate, 208 9-(Phenylseleno)-9-borabicyclo-[3.3. ljnonane, 245 B-3-Pinanyl-9-borabicyclo-[3.3.ljnonane, 249 Potassium triethylborohydride, 260... [Pg.407]

Lithium dialkylcuprates-Boron trifluoride etherate, 208 Lithium diallylcuprate, 11 Lithium dibutylcuprate, 61, 208, 344 Lithium dibutylcuprate-Boron trifluoride etherate, 208 Lithium dimethylcuprate, 63, 151, 258 Lithium dimethylcuprate-Boron trifluoride etherate, 208 Organocopper reagents, 11, 61, 63, 131, 151, 207, 344 Organocopper reagents-Boron trifluoride etherate, 208 Organolithium reagents-Copper(I) halides, 58... [Pg.408]

Related Reagents. Boron Trifluoride-Acetic Acid Boron Trifluoride-Acetic Anhydride Boron Trifluoride Etherate Boron Trifluoride Dimethyl Sulfide Tetrafluoroboric Acid. [Pg.88]

A mixture of an acid anhydride and a ketone is saturated with boron trifluoride this is followed by treatment with aqueous sodium acetate. The quantity of boron trifluoride absorbed usually amounts to 100 mol per cent, (based on total mola of ketone and anhydride). Catalytic amounts of the reagent do not give satisfactory results. This is in line with the observation that the p diketone is produced in the reaction mixture as the boron difluoride complex, some of which have been isolated. A reasonable mechanism of the reaction postulates the conversion of the anhydride into a carbonium ion, such as (I) the ketone into an enol type of complex, such as (II) followed by condensation of (I) and (II) to yield the boron difluoride complex of the p diketone (III) ... [Pg.861]

Boron trifluoride is used for the preparation of boranes (see Boron compounds). Diborane is obtained from reaction with alkafl metal hydrides organoboranes are obtained with a suitable Grignard reagent. [Pg.162]

Covalent fluondes of group 3 and group 5 elements (boron, tin, phosphorus, antimony, etc ) are widely used m organic synthesis as strong Lewis acids Boron trifluoride etherate is one of the most common reagents used to catalyze many organic reactions. A representative example is its recent application as a catalyst in the cycloadditions of 2-aza-l,3-dienes with different dienophiles [14] Boron trifluoride etherate and other fluonnated Lewis acids are effective activators of the... [Pg.944]

In addition to the boron trifluoride-diethyl ether complex, chlorotrimcthylsilanc also shows a rate accelerating effect on cuprate addition reactions this effect emerges only if tetrahydrofuran is used as the reaction solvent. No significant difference in rate and diastereoselectivity is observed in diethyl ether as reaction solvent when addition of the cuprate, prepared from butyllithium and copper(I) bromide-dimethylsulfide complex, is performed in the presence or absence of chlorotrimethylsilane17. If, however, the reaction is performed in tetrahydrofuran, the reaction rate is accelerated in the presence of chlorotrimethylsilane and the diastereofacial selectivity increases to a ratio of 88 12 17. In contrast to the reaction in diethyl ether, the O-silylated product is predominantly formed in tetrahydrofuran. The alcohol product is only formed to a low extent and showed a diastereomeric ratio of 55 45, which is similar to the result obtained in the absence of chlorotrimethylsilane. This discrepancy indicates that the selective pathway leading to the O-silylated product is totally different and several times faster than the unselective pathway" which leads to the unsilylated alcohol adduct. A slight further increase in the Cram selectivity was achieved when 18-crown-6 was used in order to increase the steric bulk of the reagent. [Pg.27]

Addition of 15-crown-5 to the higher-order cuprate led to a reagent that is totally unrcac-tive towards 2-phenylpropanal even at room temperature18. If, however, boron trifluoride-diethyl ether complex was added as additional ingredient, the reactivity was restored and, furthermore, the Cram selectivity increased to 90 10 (Table 4). Analogous results could be obtained by placing the crown-ether effect within the cuprate itself, as in reagent 10. [Pg.27]

The alkynyl reagent 9 was recently introduced for the dia stereoselective synthesis of tertiary propargylic alcohols144. 9 can be prepared as a solid 1 1 complex with tetrahydrofuran by treatment of 9-methoxy-9-borabicyclo[3.3.1]nonane with (trimethylsilylethynyl)lithium, followed by addition of boron trifluoride-diethyl ether complex. The nucleophilic addition of reagent 9 to (R)-2-methoxy-2-methylhexanal (10) afforded a mixture of the diastereomers 11 with a considerable preference to the nonchelation-controlled (3S,4R)-isomer144. [Pg.62]

Pure di-2-propenylzinc2,8,9 10, bis(2-methyl-2-propenyl)zinc11 or di-2-butenylzinc11 are best prepared by the metal exchange between dimethylzinc and the appropriate triallylborane, which is produced in situ from the Grignard reagent and boron trifluoride-diethyl ether complex. The purification is accomplished by distillation, for experimental procedure, see ref 2, p619. [Pg.391]

These results may be explained either by Cram s cyclic model in the case of lithium alkyls or by Cornforth s dipolar model if copper-boron trifluoride reagents are used. Boron trifluoride causes double complexation of both nitrogen and oxygen atoms which results in the formation of an adduct with rigid antiperiplanar conformation due to electrostatic repulsion (see 4 and 5)9. [Pg.705]

Phenyllithium and phenylcopper boron trifluoride yield different diastereomers of the reaction products, i.c., the sense of asymmetric induction is a function of the metal. These results are rationalized on the basis of antiperiplanar 6 and synperiplanar 8 reactive enoate conformations for additions of the copper and lithium reagents, respectively. [Pg.904]

Stannane 6a underwent facile transmetalation in tetrahydrofuran at — 78 °C on treatment with butyllithium to afford 6b. Addition of the lithium reagent 6b to a solution of 1.1 equivalents of copper(I) bromide-dimethyl sulfide in 1 1 diisopropyl sulfide/tetrahydrofuran at — 78 °C gave the copper reagent 6c, which reacted with methyl vinyl ketone at —78 "C in the presence of boron trifluoride-diethyl ether65, producing 7 in 55% yield65. [Pg.914]

Synthesis of Derivatizing Reagent III. We placed 50 mL of methanol, which had been previously dried over 4-S molecular sieves, in a 100-mL round-bottom flask and added 6.0 g of 2-hydroxynicotinic acid and 3 mL of boron trifluoride etherate. The solution was heated to reflux for 24 h and the solvent was removed under reduced pressure. The residue was dissolved in 50 mL of 0.1-ff sodium hydroxide and extracted with 60 mL of chloroform. The chloroform extract was concentrated under reduced pressure and the residue crystallized from isopropyl alcohol. The yield of 3-carbomethoxy-2(lH)pyridone was 5.0 g mp 152.5-154°C NMR (CDCI3) 6 3.85 (s, 3, -CH3), 6.34 (t, 1,... [Pg.222]

Note It is reported that the use of chlorobenzene as solvent is essential when the reagent is to be used to detect aromatic amines [1]. In the case of steroids, penicillins, diuretics and alkaloids the reaction should be accelerated and intensified by spraying afterwards with dimethylsulfoxide (DMSO) or dimethylformamide (DMF), indeed this step makes it possible to detect some substances when this would not otherwise be possible [5,9-11] this latter treatment can, like heating, cause color changes [5,9]. Penicillins and diuretics only exhibit weak reactions if not treated afterwards with DMF [10, 11]. Steroids alone also yield colored derivatives with DMSO [9]. Tlreatment afterwards with diluted sulfuric acid (c = 2 mol/L) also leads to an improvement in detection sensitivity in the case of a range of alkaloids. In the case of pyrrolizidine alkaloids it is possible to use o-chloranil as an alternative detection reagent however, in this case it is recommended that the plate be treated afterwards with a solution of 2 g 4-(dimethyl-amino)-benzaldehyde and 2 ml boron trifluoride etherate in 100 ml anhydrous ethanol because otherwise the colors initially produced with o-chloranil rapidly fade [12]. [Pg.103]

Oxidation of chalcones with TTN has been studied in detail (95, 96), and it has been shown that the products obtained depend on the amount of reagent and the solvent employed. Oxidation with 1 equivalent of TTN in methanol, methanol-chloroform, or methanol-boron trifluoride leads to acetals of the type (XXXIV) (see also Scheme 21) in yields of 20-80%. When 3 equivalents of TTN are employed, however, and aqueous glyme containing a little perchloric acid used as solvent, the products are benzils. This remarkable transformation, which proceeds in yields varying from moderate to good (40-80%), involves three distinct oxidations by TTN, and these are outlined in Scheme 22. Each individual step in this reaction sequence has been investigated in detail, with the result that useful procedures have been developed for the oxidation of both deoxybenzoins and benzoins to benzils with TTN (96). [Pg.191]


See other pages where Reagents boron trifluoride is mentioned: [Pg.512]    [Pg.1438]    [Pg.119]    [Pg.512]    [Pg.1438]    [Pg.119]    [Pg.163]    [Pg.249]    [Pg.32]    [Pg.222]    [Pg.90]    [Pg.147]    [Pg.31]    [Pg.26]    [Pg.51]    [Pg.266]    [Pg.372]    [Pg.374]    [Pg.407]    [Pg.685]    [Pg.865]    [Pg.870]    [Pg.874]    [Pg.884]    [Pg.896]    [Pg.897]    [Pg.74]    [Pg.99]    [Pg.57]    [Pg.708]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Boron reagents

Boron trifluoride

Boron trifluoride etherate reagent

Organocopper reagents-Boron trifluoride etherate

© 2024 chempedia.info