Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor models mixed-flow

Level (3) global e.g., reactor model some key parameters reactor volume, mixing/flow, residence time distribution, temperature profile, reactor type... [Pg.3]

Parameters and constraints (i.e., time, reactor model equations, flow rates and mixing fractions)... [Pg.16]

Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that... Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that...
The effectiveness of a fluidized bed as a ehemical reactor depends to a large extent on the amount of convective and diffusive transfer between bubble gas and emulsion phase, since reaction usually occurs only when gas and solids are in contact. Often gas in the bubble cloud complex passes through the reactor in plug flow with little back mixing, while the solids are assumed to be well mixed. Actual reactor models depend greatly on kinetics and fluidization characteristics and become too complex to treat here. [Pg.35]

In this chapter the simulation examples are described. As seen from the Table of Contents, the examples are organised according to twelve application areas Batch Reactors, Continuous Tank Reactors, Tubular Reactors, Semi-Continuous Reactors, Mixing Models, Tank Flow Examples, Process Control, Mass Transfer Processes, Distillation Processes, Heat Transfer, and Dynamic Numerical Examples. There are aspects of some examples which relate them to more than one application area, which is usually apparent from the titles of the examples. Within each section, the examples are listed in order of their degree of difficulty. [Pg.279]

In the second model (Figure 5.1b), the mixed-flow or continuous well-mixed or continuous-stirred-tank (CSTR) model, feed and product takeoff are both continuous, and the reactor contents are assumed to be perfectly mixed. This leads to uniform composition and temperature throughout the reactor. Because of the perfect mixing, a fluid element can leave the instant it enters the reactor or stay for an extended period. The residence time of individual fluid elements in the reactor varies. [Pg.83]

In practice, it is often possible with stirred-tank reactors to come close to the idealized mixed-flow model, providing the fluid phase is not too viscous. For homogenous reactions, such reactors should be avoided for some types of parallel reaction systems (see Figure 5.6) and for all systems in which byproduct formation is via series reactions. [Pg.128]

The performance of fluidized-bed reactors is not approximated by either the mixed-flow or plug-flow idealized models. The solid phase tends to be in mixed-flow, but the bubbles lead to the gas phase behaving more like plug-flow. Overall, the performance of a fluidized-bed reactor often lies somewhere between the mixed-flow and plug-flow models. [Pg.130]

Example 14.1 Consider again the chlorination reaction in Example 7.3. This was examined as a continuous process. Now assume it is carried out in batch or semibatch mode. The same reactor model will be used as in Example 7.3. The liquid feed of butanoic acid is 13.3 kmol. The butanoic acid and chlorine addition rates and the temperature profile need to be optimized simultaneously through the batch, and the batch time optimized. The reaction takes place isobarically at 10 bar. The upper and lower temperature bounds are 50°C and 150°C respectively. Assume the reactor vessel to be perfectly mixed and assume that the batch operation can be modeled as a series of mixed-flow reactors. The objective is to maximize the fractional yield of a-monochlorobutanoic acid with respect to butanoic acid. Specialized software is required to perform the calculations, in this case using simulated annealing3. [Pg.295]

As discussed in Section 17.2.3.1, reactor performance in general depends on (1) the kinetics of reaction, (2) the flow pattern as represented by the RTD, and (3) mixing characteristics within the vessel. The performance predicted by ideal reactor models (CSTR, PFR, and LFR) is determined entirely by (1) and (2), and they do not take (3)... [Pg.454]

The TIS and DPF models, introduced in Chapter 19 to describe the residence time distribution (RTD) for nonideal flow, can be adapted as reactor models, once the single parameters of the models, N and Pe, (or DL), respectively, are known. As such, these are macromixing models and are unable to account for nonideal mixing behavior at the microscopic level. For example, the TIS model is based on the assumption that complete backmixing occurs within each tank. If this is not the case, as, perhaps, in a polymerization reaction that produces a viscous product, the model is incomplete. [Pg.495]

The segregated-flow reactor model (SFM) represents the micromixing condition of complete segregation (no mixing) of fluid elements. As noted in Section 19.2, this is one extreme model of micromixing, the maximum-mixedness model being the other. [Pg.501]

A reactor model based on solid particles in PF may be used for situations in which there is little or no mixing of particles in the direction of flow. An example is that of a conveyor belt carrying the particles others that approximate this include a rotating... [Pg.556]

A reactor model based on solid particles in BMF may be used for situations in which there is deliberate mixing of the reacting system. An example is that of a fluid-solid system in a well-stirred tank (i.e., a CSTR)-usually referred to as a slurry reactor, since the fluid is normally a liquid (but may also include a gas phase) the system may be semibatch with respect to the solid phase, or may be continuous with respect to all phases (as considered here). Another example involves mixing of solid particles by virtue of the flow of fluid through them an important case is that of a fluidized bed, in which upward flow of fluid through the particles brings about a particular type of behavior. The treatment here is a crude approximation to this case the actual flow pattern and resulting performance in a fluidized bed are more complicated, and are dealt with further in Chapter 23. [Pg.559]

Simpler optimization problems exist in which the process models represent flow through a single pipe, flow in parallel pipes, compressors, heat exchangers, and so on. Other flow optimization problems occur in chemical reactors, for which various types of process models have been proposed for the flow behavior, including well-mixed tanks, tanks with dead space and bypassing, plug flow vessels, dispersion models, and so on. This subject is treated in Chapter 14. [Pg.461]

The IEM model is a simple example of an age-based model. Other more complicated models that use the residence time distribution have also been developed by chemical-reaction engineers. For example, two models based on the mixing of fluid particles with different ages are shown in Fig. 5.15. Nevertheless, because it is impossible to map the age of a fluid particle onto a physical location in a general flow, age-based models cannot be used to predict the spatial distribution of the concentration fields inside a chemical reactor. Model validation is thus performed by comparing the predicted outlet concentrations with experimental data. [Pg.214]

At present our 6-m tank reactor gives 75% conversion for the first order reaction A R. However, since the reactor is stirred with an underpowered paddle turbine, we suspect incomplete mixing and poor flow patterns in the vessel. A pulse tracer shows that this is so and gives the flow model sketched in Fig. E12.2. What conversion can we expect if we replace the stirrer with one powerful enough to ensure mixed flow ... [Pg.290]

The second order aqueous reaction A + B R + Sis run in a large tank reactor (V = 6 m ) and for an equimolar feed stream (C o = Qo) conversion of reactants is 60%. Unfortunately, agitation in our reactor is rather inadequate and tracer tests of the flow within the reactor give the flow model sketched in Fig. P12.ll. What size of mixed flow reactor will equal the performance of our present unit ... [Pg.292]

Consider the reactor of Fig. 26.1(constant flow rates of both solids and gas into and out of the reactor. With the assumption of uniform gas concentration and mixed flow of solids, this model represents a fluidized-bed reactor in which there is no elutriation of fine particles. [Pg.594]

Consider the following process for converting waste shredded fibers into a useful product. Fibers and fluid are fed continuously into a mixed flow reactor where they react according to the shrinking core model with the reaction step as rate controlling. Develop the performance expression for this operation as a function of the pertinent parameters and ignore elutri-ation. [Pg.606]


See other pages where Reactor models mixed-flow is mentioned: [Pg.463]    [Pg.268]    [Pg.300]    [Pg.340]    [Pg.511]    [Pg.512]    [Pg.52]    [Pg.571]    [Pg.260]    [Pg.159]    [Pg.92]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.293]    [Pg.294]    [Pg.246]    [Pg.18]    [Pg.21]    [Pg.584]    [Pg.681]    [Pg.44]    [Pg.123]    [Pg.36]    [Pg.295]    [Pg.683]    [Pg.4]   
See also in sourсe #XX -- [ Pg.83 , Pg.84 ]




SEARCH



Mix Reactors

Mixed flow models

Mixed flow reactor

Mixed models

Mixed reactors

Mixing Models Reactors with Ideal Flows

Mixing flows

Mixing models

Modeling mixing

Modeling of Nonideal Flow or Mixing Effects on Reactor Performance

Reactors mixing

© 2024 chempedia.info