Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kiln reactor

Others [e.g., spray reactor (Fig. 1.3e), slurry reactor, kiln reactor (Fig. 1.3/), membrane reactor, etc.]. [Pg.7]

Short dry kilns are usually accompanied by an external preheater or pre-calciner (Figure 1.7) in which the feed is dried, preheated, or even partially calcined prior to entering the main reactor (kiln). As a result the thermal load on the kiln proper is reduced. Hence kilns equipped with preheaters or precalciners tend to be short, on the order of 15-75 m (about 50-250 ft) depending on the process. The shorter kilns are those in which the entering feed material is almost calcined. Applications include cement and some lime kilns. Because of the large feed particle size encountered in limestone calcination, modern lime kilns are equipped with preheaters which function as a packed bed of stone with a countercurrent flow of kiln exhaust gas rather than the typical cyclone preheaters in cement kiln systems. [Pg.10]

Preheat Train, Crude Heaters, Crude Tower, Atmospheric Flash Tower, Syn Tower, HCC Heaters, Reactor, Kiln, Steam Coils, Air Blower, Cyclone, Main Fractionator, Unsaturated Gas Plant... [Pg.260]

Other designs of kilns use static shells rather than rotating shells and rely on mechanical rakes to move solid material through the reactor. [Pg.60]

The iron carbide process is alow temperature, gas-based, fluidized-bed process. Sized iron oxide fines (0.1—1.0 mm) are preheated in cyclones or a rotary kiln to 500°C and reduced to iron carbide in a single-stage, fluidized-bed reactor system at about 590°C in a process gas consisting primarily of methane, hydrogen, and some carbon monoxide. Reduction time is up to 18 hours owing to the low reduction temperature and slow rate of carburization. The product has the consistency of sand, is very britde, and contains approximately 6% carbon, mostly in the form of Ee C. [Pg.431]

The catalyst is employed in bead, pellet, or microspherical form and can be used as a fixed bed, moving bed, or fluid bed. The fixed-bed process was the first process used commercially and employs a static bed of catalyst in several reactors, which allows a continuous flow of feedstock to be maintained. The cycle of operations consists of (/) the flow of feedstock through the catalyst bed (2) the discontinuance of feedstock flow and removal of coke from the catalyst by burning and (J) the insertion of the reactor back on-stream. The moving-bed process uses a reaction vessel, in which cracking takes place, and a kiln, in which the spent catalyst is regenerated and catalyst movement between the vessels is provided by various means. [Pg.205]

Fig. 4. Multiphase fluid and fluid—solids reactors (a) bubble column, (b) spray column, (c) slurry reactor and auxiUaries, (d) fluidization unit, (e) gas—bquid—sobd fluidized reactor, (f) rotary kiln, and (g) traveling grate or belt drier. Fig. 4. Multiphase fluid and fluid—solids reactors (a) bubble column, (b) spray column, (c) slurry reactor and auxiUaries, (d) fluidization unit, (e) gas—bquid—sobd fluidized reactor, (f) rotary kiln, and (g) traveling grate or belt drier.
Na2B0402 10H2O, and cmde oil residue (41) in a rotary kiln heated to 1038°C. Borax is fed at the rate of 1360 kg/h and sprayed with 635 kg/h of 17% residue cmde oil. The heated mixture then reacts with CI2 at 760°C in a separate reactor to yield BCl. On a smaller scale, BCl can be prepared by the reaction of CI2 and a mixture of boron oxide [1303-86-2] 2 3 coke, and lampblack in a fluidized bed (42). Other methods for the preparation... [Pg.223]

Precipitated Calcium Carbonate. Precipitated calcium carbonate can be produced by several methods but only the carbonation process is commercially used in the United States. Limestone is calcined in a kiln to obtain carbon dioxide and quicklime. The quicklime is mixed with water to produce a milk-of-lime. Dry hydrated lime can also be used as a feedstock. Carbon dioxide gas is bubbled through the milk-of-lime in a reactor known as a carbonator. Gassing continues until the calcium hydroxide has been converted to the carbonate. The end point can be monitored chemically or by pH measurements. Reaction conditions determine the type of crystal, the size of particles, and the size distribution produced. [Pg.410]

The majority of the cyanuric acid produced commercially is made via pyrolysis of urea [57-13-6] (mp 135°C) primarily employing either directiy or indirectly fired stainless steel rotary kilns. Small amounts of CA are produced by pyrolysis of urea in stirred batch or continuous reactors, over molten tin, or in sulfolane. The feed to the kilns can be either urea soHd, melt, or aqueous solution. Since conversion of urea to CA is endothermic and goes through a plastic stage, heat and mass transport are important process considerations. The kiln operates under slight vacuum. Air is drawn into the kiln to avoid explosive concentrations of ammonia (15—27 mol %). [Pg.420]

Beside continuous horizontal kilns, numerous other methods for dry pyrolysis of urea have been described, eg, use of stirred batch or continuous reactors, ribbon mixers, ball mills, etc (109), heated metal surfaces such as moving belts, screws, rotating dmms, etc (110), molten tin or its alloys (111), dielectric heating (112), and fluidized beds (with performed urea cyanurate) (113). AH of these modifications yield impure CA. [Pg.421]

Three different types of furnaces are generally in use for calcination. The shaft furnace is considered to be the most suited for calcining coarse limestone. Furnaces of the rotary kiln type are used for handling materials of mixed particle sizes and lumps which disintegrate during the process. Calcination can be carried out in a fluidized bed-reactor for materials of small and uniform particle size. These furnaces are usually fired with gas, oil or coke in some cases electric heating is resorted to. [Pg.348]

In the titanium dioxide production plant where the chlorine process is employed, the wastewater from the kiln, the distillation column, bottom residue, and those from other parts of the plant first settle in a pond. The overflow from this pond is neutralized with ground calcium carbonate in a particular reactor, while the scrubber wastewater is neutralized with lime in another reactor. The two streams are sent to a settling pond before being discharged. [Pg.950]

Annular film reactor, Chemithon, 23 547 Annular flow, 11 772 Annular shaft kiln, 15 48-49 Annulenes, 12 243 Anode(s)... [Pg.59]


See other pages where Kiln reactor is mentioned: [Pg.273]    [Pg.273]    [Pg.273]    [Pg.273]    [Pg.273]    [Pg.273]    [Pg.60]    [Pg.232]    [Pg.22]    [Pg.23]    [Pg.48]    [Pg.53]    [Pg.519]    [Pg.169]    [Pg.508]    [Pg.31]    [Pg.119]    [Pg.530]    [Pg.206]    [Pg.273]    [Pg.274]    [Pg.992]    [Pg.414]    [Pg.12]    [Pg.63]    [Pg.278]    [Pg.84]    [Pg.774]    [Pg.567]    [Pg.153]    [Pg.383]    [Pg.503]    [Pg.520]    [Pg.2]    [Pg.3]    [Pg.16]    [Pg.27]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Auger kiln reactors

Extrusion-rotary kiln reactors

Kilning

Reactor, practical kilns

Reactors vertical kilns

Reactors, chemical rotary kiln

Rotary kiln reactors

Rotary kiln reactors pyrolysis

Rotary kiln reactors reactor

Rotating kiln reactor

Screw kiln reactors

Temperature profiles, reactors cement kiln

© 2024 chempedia.info