Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor axial flow model

This section has based scaleups on pressure drops and temperature driving forces. Any consideration of mixing, and particularly the closeness of approach to piston flow, has been ignored. Scaleup factors for the extent of mixing in a tubular reactor are discussed in Chapters 8 and 9. If the flow is turbulent and if the Reynolds number increases upon scaleup (as is normal), and if the length-to-diameter ratio does not decrease upon scaleup, then the reactor will approach piston flow more closely upon scaleup. Substantiation for this statement can be found by applying the axial dispersion model discussed in Section 9.3. All the scaleups discussed in Examples 5.10-5.13 should be reasonable from a mixing viewpoint since the scaled-up reactors will approach piston flow more closely. [Pg.183]

These boundary conditions are really quite marvelous. Equation (9.16) predicts a discontinuity in concentration at the inlet to the reactor so that ain a Q+) if D >0. This may seem counterintuitive until the behavior of a CSTR is recalled. At the inlet to a CSTR, the concentration goes immediately from to The axial dispersion model behaves as a CSTR in the limit as T) — 00. It behaves as a piston flow reactor, which has no inlet discontinuity, when D = 0. For intermediate values of D, an inlet discontinuity in concentrations exists but is intermediate in size. The concentration n(O-l-) results from backmixing between entering material and material downstream in the reactor. For a reactant, a(O-l-) [Pg.332]

Chapters 8 and Section 9.1 gave preferred models for laminar flow and packed-bed reactors. The axial dispersion model can also be used for these reactors but is generally less accurate. Proper roles for the axial dispersion model are the following. [Pg.334]

Laminar Pipeline Flows. The axial dispersion model can be used for laminar flow reactors if the reactor is so long that At/R > 0.125. With this high value for the initial radial position of a molecule becomes unimportant. [Pg.335]

The molecule diffuses across the tube and samples many streamlines, some with high velocity and some with low velocity, during its stay in the reactor. It will travel with an average velocity near u and will emerge from the long reactor with a residence time close to F. The axial dispersion model is a reasonable approximation for overall dispersion in a long, laminar flow reactor. The appropriate value for D is known from theory ... [Pg.335]

Example 9.6 Compare the nonisothermal axial dispersion model with piston flow for a first-order reaction in turbulent pipeline flow with Re= 10,000. Pick the reaction parameters so that the reactor is at or near a region of thermal runaway. [Pg.339]

Water at room temperature is flowing through a 1.0-in i.d. tubular reactor at Re= 1000. What is the minimum tube length needed for the axial dispersion model to provide a reasonable estimate of reactor performance What is the Peclet number at this minimum tube length Why would anyone build such a reactor ... [Pg.346]

Most biochemical reactors operate with dilute reactants so that they are nearly isothermal. This means that the packed-bed model of Section 9.1 is equivalent to piston flow. The axial dispersion model of Section 9.3 can be applied, but the correction to piston flow is usually small and requires a numerical solution if Michaehs-Menten kinetics are assumed. [Pg.444]

Washout experiments can be used to measure the residence time distribution in continuous-flow systems. A good step change must be made at the reactor inlet. The concentration of tracer molecules leaving the system must be accurately measured at the outlet. If the tracer has a background concentration, it is subtracted from the experimental measurements. The flow properties of the tracer molecules must be similar to those of the reactant molecules. It is usually possible to meet these requirements in practice. The major theoretical requirement is that the inlet and outlet streams have unidirectional flows so that molecules that once enter the system stay in until they exit, never to return. Systems with unidirectional inlet and outlet streams are closed in the sense of the axial dispersion model i.e., Di = D ut = 0- See Sections 9.3.1 and 15.2.2. Most systems of chemical engineering importance are closed to a reasonable approximation. [Pg.541]

For reactors with free turbulent flow without dominant boundary layer flows or gas/hquid interfaces (due to rising gas bubbles) such as stirred reactors with bafQes, all used model particle systems and also many biological systems produce similar results, and it may therefore be assumed that these results are also applicable to other particle systems. For stirred tanks in particular, the stress produced by impellers of various types can be predicted with the aid of a geometrical function (Eq. (20)) derived from the results of the measurements. Impellers with a large blade area in relation to the tank dimensions produce less shear, because of their uniform power input, in contrast to small and especially axial-flow impellers, such as propellers, and all kinds of inclined-blade impellers. [Pg.80]

A one-dimensional isothermal plug-flow model is used because the inner diameter of the reactor is 4 mm. Although the apparent gas flow rate is small, axial dispersion can be neglected because the catalj st is closely compacted and the concentration profile is placid. With the assumption of Langmuir adsorption, the reactor model can be formulated as. [Pg.335]

This example models the dynamic behaviour of an non-ideal isothermal tubular reactor in order to predict the variation of concentration, with respect to both axial distance along the reactor and flow time. Non-ideal flow in the reactor is represented by the axial dispersion flow model. The analysis is based on a simple, isothermal first-order reaction. [Pg.410]

In this section, we apply the axial dispersion flow model (or DPF model) of Section 19.4.2 to design or assess the performance of a reactor with nonideal flow. We consider, for example, the effect of axial dispersion on the concentration profile of a species, or its fractional conversion at the reactor outlet. For simplicity, we assume steady-state, isothermal operation for a simple system of constant density reacting according to A - products. [Pg.499]

The solution of Eq. (173) poses a rather formidable task in general. Thus the dispersed plug-flow model has not been as extensively studied as the axial-dispersed plug-flow model. Actually, if there are no initial radial gradients in C, the radial terms will be identically zero, and Eq. (173) will reduce to the simpler Eq. (167). Thus for a simple isothermal reactor, the dispersed plug flow model is not useful. Its greatest use is for either nonisothermal reactions with radial temperature gradients or tube wall catalysed reactions. Of course, if the reactants were not introduced uniformly across a plane the model could be used, but this would not be a common practice. Paneth and Herzfeld (P2) have used this model for a first order wall catalysed reaction. The boundary conditions used were the same as those discussed for tracer measurements for radial dispersion coefficients in Section II,C,3,b, except that at the wall. [Pg.183]

If the radial diffusion or radial eddy transport mechanisms considered above are insufficient to smear out any radial concentration differences, then the simple dispersed plug-flow model becomes inadequate to describe the system. It is then necessary to develop a mathematical model for simultaneous radial and axial dispersion incorporating both radial and axial dispersion coefficients. This is especially important for fixed bed catalytic reactors and packed beds generally (see Volume 2, Chapter 4). [Pg.82]

Simple Analytical Models. To derive simple analytical models for horizontal reactors, two flow simplifications have been used boundary layer similarity models and film theory (see Table 3 in reference 212). In these treatments, a constant concentration shape is assumed from the start of the deposition zone or from an axial position after the initial concentration profile development zone. Thereafter, the shape stays constant, with only the absolute magnitude of the concentration changing with axial position. [Pg.259]

In this section we have presented the first example of two-point boundary value problems that occur in chemical/biological engineering. The axial dispersion model for tubular reactors is a generalization of the plug flow model for tubular reactors which removes some of the limiting assumptions of plug flow. Our model includes additional axial diffusion terms that are based on the simple physics laws of Fick for mass and of Fourier for heat dispersion. [Pg.298]


See other pages where Reactor axial flow model is mentioned: [Pg.512]    [Pg.59]    [Pg.815]    [Pg.270]    [Pg.290]    [Pg.328]    [Pg.334]    [Pg.335]    [Pg.336]    [Pg.416]    [Pg.262]    [Pg.397]    [Pg.368]    [Pg.44]    [Pg.408]    [Pg.212]    [Pg.270]    [Pg.290]    [Pg.328]    [Pg.334]    [Pg.335]    [Pg.335]    [Pg.336]    [Pg.416]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Axial flow

Axial flow model

Axial model

© 2024 chempedia.info