Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity trends

Several reactivity trends are worth noting. Reactions that are rapid frequently stay rapid as the temperature or centre-of-mass kinetic energy of the reactants is varied. Slow exothenuic reactions almost always show behaviour such tliat... [Pg.806]

By way of example, tert-huty peroxyacetate [107-71-1] is more thermally stable than 3-hydroxy-1,1-dimethylbutyl peroxyneoheptanoate [110972-57-1]. Although other factors affect thermal stabiUty, the trends shown can be used to quaUtatively predict peroxyester reactivity trends. The order of activity of the R group ia peroxyesters is also observed ia other / fZ-aLkylperoxy-containing compounds. [Pg.225]

Absolute rate data for Friedel-Crafts reactions are difficult to obtain. The reaction is complicated by sensitivity to moisture and heterogeneity. For this reason, most of the structure-reactivity trends have been developed using competitive methods, rather than by direct measurements. Relative rates are established by allowing the electrophile to compete for an excess of the two reagents. The product ratio establishes the relative reactivity. These studies reveal low substrate and position selectivity. [Pg.581]

Uggerud E (2003) Physical Organic Chemistry of the Gas Phase. Reactivity Trends for Organic Cations. 225 1-34... [Pg.239]

Such calculations have also been performed for isolated impurities of late transition metals alloyed into the surface of other transition metals, and the trends are the same. The accuracy of the numbers in Fig. 6.33 is limited since many approximations had to be made to calculate them. Nevertheless, they reflect trends very well and give useful insight into reactivity trends that have actually been measured for a number of pseudomorfic overlayers [J.A. Rodriquez and D.W. Goodman, Science 257 (1992) 897]. [Pg.254]

General reactivity trends for alkenes were established for hydrozirconahon by way of qualitative studies terminal alkene > internal alkene > exocyclic alkene > cyclic alkene trisubshtuted alkene. The rate of hydrozirconahon decreases with increasing substitution on the alkene. This property was used for selechve monohydrozir-conation of conjugated and non-conjugated polyene derivahves (Scheme 8-8) [84-86]. [Pg.258]

Apart from the role of substituents in determining regioselectivity, several other structural features affect the reactivity of dipolarophiles. Strain increases reactivity norbornene, for example, is consistently more reactive than cyclohexene in 1,3-DCA reactions. Conjugated functional groups usually increase reactivity. This increased reactivity has most often been demonstrated with electron-attracting substituents, but for some 1,3-dipoles, enol ethers, enamines, and other alkenes with donor substituents are also quite reactive. Some reactivity data for a series of alkenes with several 1,3-dipoles are given in Table 10.6 of Part A. Additional discussion of these reactivity trends can be found in Section 10.3.1 of Part A. [Pg.529]

An important improvement in the oxy-Cope reaction was made when it was found that the reaction is strongly catalyzed by base.212 When the C(3) hydroxy group is converted to its alkoxide, the reaction is accelerated by a factor of 1010-1017. These base-catalyzed reactions are called anionic oxy-Cope rearrangements, and their rates depend on the degree of cation coordination at the oxy anion. The reactivity trend is K+ > Na+ > Li+. Catalytic amounts of tetra-rc-butylammonium salts lead to accelerated rates in some cases. This presumably results from the dissociation of less reactive ion pair species promoted by the tetra-rc-butylammonium ion.213... [Pg.556]

The catalyzed hydrogenation of an aldehyde- vs. a ketone-carbonyl is invariably faster because of steric effects (23), and the data for 6 vs. 10 are in line with this (eqs. 4 and 5). Thus, conversions of 6a-c after 0.5 h at standard conditions are 86, 47, and 97%, respectively, while corresponding values for lOa-c after 4 h are 78, 36 and 49%, respectively. Indeed, the aldehydes can be reduced at 25 °C under otherwise identical conditions (6b gives 38% conversion after 4 h, and 6c gives 99% after 15 h). The above reactivity trend for the ketones lOa-c shows that the hydrogenation rates depend on the substituent para to the carbonyl functionality and increase in the order H > OMe > OH. For the aldehyde susbtrates, the more limited data (substrate 6 with R = H and R = OMe was not available) suggest a similar para-substitucnt effect (at least OMe > OH). Note that this is the reverse trend to that observed for reduction of the activated C=C systems described above. [Pg.140]

The formation of the Wheland intermediate from the ion-radical pair as the critical reactive intermediate is common in both nitration and nitrosation processes. However, the contrasting reactivity trend in various nitrosation reactions with NO + (as well as the observation of substantial kinetic deuterium isotope effects) is ascribed to a rate-limiting deprotonation of the reversibly formed Wheland intermediate. In the case of aromatic nitration with NO, deprotonation is fast and occurs with no kinetic (deuterium) isotope effect. However, the nitrosoarenes (unlike their nitro counterparts) are excellent electron donors as judged by their low oxidation potentials as compared to parent arene.246 As a result, nitrosoarenes are also much better Bronsted bases249 than the corresponding nitro derivatives, and this marked distinction readily accounts for the large differentiation in the deprotonation rates of their respective conjugate acids (i.e., Wheland intermediates). [Pg.292]

The extent to which steric effects adversely affect the attainment of such intimate ion-pair structures would be reflected in an increase in the work term and concomitant diminution of the inner-sphere rate. This qualitative conclusion accords with the reactivity trend in Figure 16. However, Marcus theory does not provide a quantitative basis for evaluating the variation in the work term of such ion pairs. To obtain the latter we now turn to the Mulliken theory of charge transfer in which the energetics of ion-pair formation evolve directly, and provide quantitative informa-... [Pg.135]

Although we have concentrated in this chapter on the derivatives of the energy and density, there are other chemically meaningful concepts that can be derived from the ones presented here 144 161. Among these, the chemical softness, the inverse of the chemical hardness, and the local softness [47,48] have proven to be quite useful to explain intermolecular reactivity trends. [Pg.20]

Evaluation of the only appropriate Fukui function is required for investigating an intramolecular reaction, as local softness is merely scaling of Fukui function (as shown in Equation 12.7), and does not alter the intramolecular reactivity trend. For this type, one needs to evaluate the proper Fukui functions (/+ or / ) for the different potential sites of the substrate. For example, the Fukui function values for the C and O atoms of H2CO, shown above, predicts that O atom should be the preferred site for an electrophilic attack, whereas C atom will be open to a nucleophilic attack. Atomic Fukui function for electrophilic attack (fc ) for the ring carbon atoms has been used to study the directing ability of substituents in electrophilic substitution reaction of monosubstituted benzene [23]. In some cases, it was shown that relative electrophilicity (f+/f ) or nucleophilicity (/ /f+) indices provide better intramolecular reactivity trend [23]. For example, basicity of substituted anilines could be explained successfully using relative nucleophilicity index ( / /f 1) [23]. Note however that these parameters are not able to differentiate the preferred site of protonation in benzene derivatives, determined from the absolute proton affinities [24],... [Pg.170]

Nalewajski, R. F. and A. Michalak. 1996. Charge sensitivity and bond-order analysis of reactivity trends in allyl-IMoOd Systems Two-reactant approach. J. Phys. Chem. 100 20076-20088. [Pg.477]

Calculations of the nucleophilic reactions with MeO" were performed for the carbocations 4H+, 5H+ and 6H+ in order to simulate the crucial step of aza-PAH/adduct formation. These reactions were considered as models for evaluation of the reactivity trend for these carbocations toward nucleophiles. Thus, the thermodynamical tendency of each carbocation to react with the nucleophilic sites of DNA was estimated. [Pg.349]

Another chapter (Chapter 4) is entitled Intermetallic reactivity trends in the Periodic Table . The Periodic Table, indeed (or Periodic Law or Periodic System of Chemical Elements), is acknowledged to play an indispensable role in several different sciences. Especially in inorganic chemistry it represents a fundamental classifi-catory scheme and a means of systematizing data with a clear predictive power. Inorganic chemists have traditionally made considerable use of the Periodic Table to understand the chemistry of the different elements. With a few exceptions (as detailed in the same chapter), metallurgists and intermetallic chemists have made little use of this Table to understand and describe the properties of metals and alloys we believe, however, that it may be a useful tool also in the systematics of descriptive intermetallic chemistry (as exemplified in the subsequent chapter (Chapter 5)). In several paragraphs of Chapter 4, therefore, different aspects of the Periodic Table and of its characteristic trends are summarized. [Pg.3]


See other pages where Reactivity trends is mentioned: [Pg.130]    [Pg.370]    [Pg.571]    [Pg.702]    [Pg.728]    [Pg.95]    [Pg.35]    [Pg.1510]    [Pg.1523]    [Pg.72]    [Pg.354]    [Pg.329]    [Pg.194]    [Pg.89]    [Pg.424]    [Pg.357]    [Pg.242]    [Pg.219]    [Pg.221]    [Pg.223]    [Pg.225]    [Pg.227]    [Pg.229]    [Pg.231]    [Pg.233]    [Pg.235]    [Pg.237]    [Pg.239]   
See also in sourсe #XX -- [ Pg.148 ]

See also in sourсe #XX -- [ Pg.141 , Pg.147 , Pg.148 ]




SEARCH



Abstraction, hydrogen reactivity trends

Aromatic ring reactivity trend

Carboxyl derivatives reactivity trend

Chemical reactivity and group trends

Chemical reactivity and trends

Important Trends in Surface Reactivity

Leaving groups reactivity trend

Reactivity Trends in Allowed and Forbidden Reactions

Reactivity Trends in Oxidative-Addition Reactions

Reactivity Trends in Radical Exchange Reactions

Reactivity Trends in Reactions between Nucleophiles and Electrophiles

Substrate reactivity trends

Surface reactivity trends

Trending Reactive power

Trends in Surface Reactivity

Trends in reactivity

© 2024 chempedia.info