Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions with transition-metal sulfates

A review by Brandt and van Eldik provides insight into the basic kinetic features and mechanistic details of transition metal-catalyzed autoxidation reactions of sulfur(IV) species on the basis of literature data reported up to the early 1990s (78). Earlier results confirmed that these reactions may occur via non-radical, radical and combinations of non-radical and radical mechanisms. More recent studies have shown evidence mainly for the radical mechanisms, although a non-radical, two-electron decomposition was reported for the HgSC>3 complex recently (79). The possiblity of various redox paths combined with protolytic and complex-formation reactions are the sources of manifest complexity in the kinetic characteristics of these systems. Nevertheless, the predominant sulfur containing product is always the sulfate ion. In spite of extensive studies on this topic for well over a century, important aspects of the mechanisms remain to be clarified and the interpretation of some of the reactions is still controversial. Recent studies were... [Pg.431]

Cuprous and ferrous salts are preferable. Sometimes, a transition metal salt is deliberately added to a mixtnre of a snbstrate and a persnlfate salt (Dobson et al. 1986). The free or metal-coordinated sulfate anion-radical reacts with an organic snbstrate, giving rise to a snbstrate cation-radical (Minisci et al. 1983, Itahara et al. 1988, Telo and Vieira 1997). The substrate cation-radical is often able to expel a proton and transform into the corresponding radical. The latter regenerates the initial metallic ion. The whole reaction becomes a catalytic one with respect to the metal. [Pg.63]

The sulfate promoted transition metal oxides focussed considerable attention in recent years due to attractive catalytic properties. Most of the research carried out to date centered on sulfated zirconias,1 5 not surprisingly perhaps, as they exhibit the highest surface acidity (Ho <-16.04) among the members of this family of materials and appear to be able to initiate isomerization reactions in temperatures as low as 298 K. Far less interest attracted sulfated porous titanias, mainly owing to a lower surface acidity,6 although it may be a useful property in many catalytic situations. Thus closer inspection of the preparation procedures for sulfated titanias may be of interest, in particular as the reports on preparation and properties of these materials are scarce and we are not familiar with any work dealing with titania-sulfate aerogels. [Pg.467]

Redox Reactions. Aquatic organisms may alter the particular oxidation state of some elements in natural waters during activity. One of the most significant reactions of this type is sulfate reduction to sulfide in anoxic waters. The sulfide formed from this reaction can initiate several chemical reactions that can radically change the types and amounts of elements in solution. The classical example of this reaction is the reduction of ferric iron by sulfide. The resultant ferrous iron and other transition metals may precipitate with additional sulfide formed from further biochemically reduced sulfate. Iron reduction is often accompanied by a release of precipitated or sorbed phosphate. Gardner and Lee (21) and Lee (36) have shown that Lake Mendota surface sediments contain up to 20,000 p.p.m. of ferrous iron and a few thousand p.p.m. of sulfide. The biochemical formation of sulfide is undoubtedly important in determining the oxidation state and amounts of several elements in natural waters. [Pg.341]

Cyclic sulfates provide a useful alternative to epoxides now that it is viable to produce a chiral diol from an alkene. These cyclic compounds are prepared by reaction of the diol with thionyl chloride, followed by ruthenium-catalyzed oxidation of the sulfur (Scheme 9.26).166 This oxidation has the advantage over previous procedures because it only uses a small amount of the transition metal catalyst.167168... [Pg.136]

Treatment of alkylating agents with metal cyanides should in principle be the method of choice for preparing isocyanides (equation 25). But as the cyanide ion again represents an ambident nucleophile, the well-known problems already discussed will arise (Section 1.8.2.1.i). It remains to be stated that simple alkylation of alkali metal cyanides with halogen compounds or dialkyl sulfates is not useful for the preparation of isonitriles. The formation of nitriles always prevails and isocyanides are at best obtained in yields of up to 25%. " The prospects are much tetter in the alkylation of heavy metal cyanides, if the reaction is done under conditions which initially give rise to isocyanide-transition metal complexes (equation 26). These will then be transformed into isonitriles by treatment with KCN. Under optimized conditions this technique yielded 55% of ethyl isocyanide. ... [Pg.242]

Decompositions of transition-metal sulfides, notably those of Fe, Ni, Cu and Co, have been of technological importance in ore refining. Some of the published work is concerned with naturally-occurring minerals, while other studies used synthetic preparations. Reactions often proceed by a contracting interface mechanism and the rates are decreased when gaseous product is present, or its escape is opposed by an inert gas. On heating in air, several metal sulfides form sulfates or oxysulfates as intermediates in a sequence of reactions which finally yield metal oxides [43]. [Pg.321]

Photochemical decomposition of diazo(trimethylsilyl)methane (1) in the presence of alkenes has not been thoroughly investigated (see Houben-Weyl Vol. E19b, p 1415). The available experimental data [trimethylsilylcyclopropane (17% yield) and la,2a,3j8-2,3-dimethyl-l-trimethylsilylcyclopropane (23% yield)] indicate that cyclopropanation occurs only in low yield with ethene and ( )-but-2-ene. In both cases the formal carbene dimer is the main product. In reactions with other alkenes, such as 2,3-dimethylbut-2-ene, tetrafluoroethene or hexafluoro-propene, no cyclopropanes could be detected.The transition-metal-catalyzed decomposition of diazo(trimethylsilyl)methane (1) has been applied to the synthesis of many different silicon-substituted cyclopropanes (see Table 3 and Houben-Weyl Vol.E19b, p 1415) 3.20a,b,2i.25 ( iQp. per(I) chloride has been most commonly used for carbene transfer to ethyl-substituted alkenes, cycloalkenes, styrene, and related arylalkenes. For the cyclopropanation of acyl-substituted alkenes, palladium(II) chloride is the catalyst of choice, while palladium(II) acetate was less efficient, and copper(I) chloride, copper(II) sulfate and rhodium(II) acetate dimer were totally unproductive. The cyclopropanation of ( )-but-2-ene represents a unique... [Pg.821]

Binaphthols are important as ligands for transition metal catalysts used in stereoselective syntheses. The oxidation of a suspension of powdered 2-naphthol in water with ferric chloride and air gives the corresponding binaphthol (4.42) in 95% yield. This is an improvement over homogeneous syntheses which are accompanied by quinone formation.199 The workup consists of filtration, washing with water, drying, and recrystallization from toluene. The reaction can also be run with a catalytic amount of inexpensive cop-per(II) sulfate on alumina to produce the binaphthol in 97% yield.200 A third paper reports 77-99% yields with 1 mol% of a tetramethylethylenediamine complex of copper hy-droxychloride as the catalyst.201... [Pg.84]


See other pages where Reactions with transition-metal sulfates is mentioned: [Pg.348]    [Pg.464]    [Pg.464]    [Pg.466]    [Pg.118]    [Pg.433]    [Pg.225]    [Pg.133]    [Pg.847]    [Pg.8864]    [Pg.131]    [Pg.157]    [Pg.719]    [Pg.69]    [Pg.553]    [Pg.176]    [Pg.645]    [Pg.131]    [Pg.728]    [Pg.645]    [Pg.9]    [Pg.157]    [Pg.10]    [Pg.982]    [Pg.826]    [Pg.19]    [Pg.676]    [Pg.325]    [Pg.3041]    [Pg.1080]    [Pg.284]    [Pg.62]    [Pg.1063]    [Pg.300]    [Pg.896]    [Pg.328]   
See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.5 , Pg.5 ]




SEARCH



Sulfate reaction

Sulfation reaction

Transition metal reactions

Transition reactions with

With Transition Metals

© 2024 chempedia.info