Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions, macroscale

Chemical engineers of the future will be integrating a wider range of scales than at r other branch of engineering. For example, some may work to relate the macroscale of the environment to the mesoscale of combustion systems and the microscale of molecular reactions and transport (see Chapter 7). Others may work to relate the macroscale performance of a composite aircraft to the mesoscale chemical reactor in which the wing was formed, the design of the reactor perhaps having been influenced by studies of the microscale dynamics of complex liquids (see Chapter 5). [Pg.27]

Reactions were conducted at room temperature. The monolithic design of the device led to the increased safety of the process. The authors assigned the variable yield of the reaction to the non-optimized conditions. However, they have proved the principle of conducting the reactions containing diazonium salts in a safe way at room temperature, which is not possible on macroscale and batch conditions. [Pg.186]

In the past, the principles described have been implicitly recognized in several attempts to convert monolithic catalysts into catalytic heat exchangers. While the use of millimeter dimensions and nanoporous ceramic supports meets the primary criteria already mentioned, the parallel channel structure of monoliths is not ideally tailored for heat exchanger applications, and complex header structures are required to uniformly distribute and collect reaction medium and coolant to and from the individual channels (Figure 9). The unsatisfactory interface between the milli- and macroscale has been a major weakness of such concepts. [Pg.399]

Empirical approaches are useful when macroscale HRR measurements are available but little or no information is available regarding the thermophysical properties, kinetic parameters, and heats of reaction that would be necessary to apply a more comprehensive pyrolysis model. Although these modeling approaches are crude in comparison with some of the more refined solid-phase treatments, one advantage is that all required input parameters can be obtained from widely used bench-scale fire tests using well-established data reduction techniques. As greater levels of complexity are added, establishing the required input parameters (or material properties ) for different materials becomes an onerous task. [Pg.565]

Microreactors offer a radical alternative platform for chemical synthesis, normally undertaken in macroscale flasks [68-70]. When reactions in microcapillary-scale reactors are compared with those in flask-scale batch reactors, they have been shown to offer yield, rate or selectivity advantages in a diversity of reactions schemes including carbonylative cross-coupling of arylhalides to secondary amides [32],... [Pg.50]

Microreactors provide a safe means by which reactions, including multistage schemes, can be undertaken where, otherwise, products involving unstable intermediates may be formed. This is exemplified by Fortt who showed that for a serial diazonium salt formation and chlorination reaction performed in a microreactor under hydrodynamic pumping, significant yield enhancements (15-20%) could be observed and attributed them to enhanced heat and mass transfer [77]. This demonstrates the advantage of microreactor-based synthesis where diazonium salts are sensitive to electromagnetic radiation and static electricity, which in turn can lead to rapid decomposition. Microreactors facilitate the ability to achieve continuous-flow synthesis, which is often not possible with conventional macroscale reactors and batch production. [Pg.51]

In their pioneering work, Jensen et al. demonstrated that photochemical transformation can be carried out in a microfabricated reactor [37]. The photomicroreactor had a single serpentine-shaped microchannel (having a width of 500 pm and a depth of 250 or 500 pm, and etched on a silicon chip) covered by a transparent window (Pyrex or quartz) (Scheme 4.25). A miniature UV light source and an online UV analysis probe were integrated to the device. Jensen et al. studied the radical photopinacolization of benzophenone in isopropanol. Substantial conversion of benzophenone was observed for a 0.5 M benzophenone solution in this microflow system. Such a high concentration of benzophenone would present a challenge in macroscale reactors. This microreaction device provided an opportunity for fast process optimization by online analysis of the reaction mixture. [Pg.71]

In the macroscale reaction, the formation of side products such as dinitrobenzene and picric acid is expected as a result of mass transfer limitations. Hence, by using microreactor system, the formation of the side product was reduced and the rate of reaction was increased. [Pg.136]

One of the best known examples of reversibility in bond formation is the cross-linking of cysteine, a sulfur-containing amino acid, that affects tertiary structure in proteins and, ultimately, macroscale phenomena such as the degree of curl in hair. Other examples include the imine bond, formed by the reaction of an amine group with an aldehyde, and metal coordinate bonds to atoms such as nitrogen as found in many enzymes. [Pg.9]

Emissions of soot on the other hand represent a smaller fraction of the overall emission, but are probably of greater concern from the standpoint of visibility and health effects. It has been suggested that soot emissions from fuel oil flames result from processes occurring in the vicinity of individual droplets (droplet soot) before macroscale mixing of vaporized material, and from reactions in the bulk gas stream (bulk soot) remote from individual droplets. Droplet soot appears to dominate under local fuel lean conditions (1, 2), while bulk soot formation occurs in fuel rich zones. Factors which are known to affect soot formation from liquid fuel flames include local stoichiometry, droplet size, gas-droplet relative velocity and fuel properties (primarily C H ratio). [Pg.191]

In all of the above cases, a strong non-linear coupling exists between reaction and transport at micro- and mesoscales, and the reactor performance at the macroscale. As a result, the physics at small scales influences the reactor and hence the process performance significantly. As stated in the introduction, such small-scale effects could be quantified by numerically solving the full CDR equation from the macro down to the microscale. However, the solution of the CDR equation from the reactor (macro) scale down to the local diffusional (micro) scale using CFD is prohibitive in terms of numerical effort, and impractical for the purpose of reactor control and optimization. Our focus here is how to obtain accurate low-dimensional models of these multi-scale systems in terms of average (and measurable) variables. [Pg.214]


See other pages where Reactions, macroscale is mentioned: [Pg.8]    [Pg.100]    [Pg.39]    [Pg.226]    [Pg.390]    [Pg.391]    [Pg.252]    [Pg.79]    [Pg.204]    [Pg.252]    [Pg.215]    [Pg.249]    [Pg.124]    [Pg.127]    [Pg.942]    [Pg.173]    [Pg.261]    [Pg.463]    [Pg.4]    [Pg.202]    [Pg.202]    [Pg.203]    [Pg.225]    [Pg.280]    [Pg.332]    [Pg.51]    [Pg.53]    [Pg.139]    [Pg.86]    [Pg.263]    [Pg.312]    [Pg.323]    [Pg.374]    [Pg.207]    [Pg.251]    [Pg.293]    [Pg.239]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



© 2024 chempedia.info