Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions Into Element-Hydrogen Bonds

Insertion Reactions into Element-Hydrogen Bonds... [Pg.552]

Insertion Reactions into Element-Hydrogen Bonds 11.2.4. Insertion Reactions of Carbon Dioxide and Carbon Disulfide... [Pg.576]

Silylated triphosphanes and triphosphides, synthesis, 31 188-194 yields, 31 194 Silylenes, 29 2-6 addition reactions, 29 4-6 to butadiene, 29 4 to ethylene, 29 4 to hexadienes, 29 5 mechanism, 29 4 nitric oxide scavenging, 29 4 complexes, 25 37, 51, 116, 118 as catalyst intermediates, 25 118 extrusion from disilanes, 25 114, 118 halides, 3 225 from hydridosilanes, 25 14 insertion into element-hydrogen bonds, 29 3-4... [Pg.277]

Insertion into element-hydrogen bonds tend to be less favored thermodynamically than insertions into other bonds (e.g., element-carbon). This is often attributed to the high element-hydride bond strength, which is lost upon insertion. Since the insertion reaction is also entropically disfavored, the reverse deinsertion of the unsaturated moiety to generate an element-hydride bond can be thermodynamically favored. When the hydride exists in the P position of the inserted product, this process is commonly referred to as /S-hydride elimination. Nevertheless, there are many examples of insertions into element-hydride bonds that generate stable compounds, and when this insertion reaction is an uphill process, chelation to the element or subsequent chemistry (i.e., catalytic cycles) can be employed to facilitate the initial insertion step. [Pg.553]

On the other hand polysilylalkynes with phenyl or allyl substituents are converted with triflic acid into polymeric alkynylsilyltriflates. These polymers react with many acidic element hydrogen compounds or lithium element compounds with formation of silicon element bonds. Thus we found an easy approach to numerous new functional substituted alkynes [12], Eq.(9) shows selected examples of this reaction type. [Pg.366]

In contrast to some related reviews, which use reaction class or electrophiles as organizational elements, this chapter is divided into three main sections according to catalyst class (i) Bronsted acid catalysis by phosphoric acid and phosphoramide derivatives, (ii) N—H hydrogen bond catalysis by organic base and ammonium systems, and (iii) combined acid catalysis including Bronsted-acid-assisted Bronsted acid, Lewis-acid-assisted Bronsted acid, and Lewis-acid-assisted Br0nsted acid systems (Figure 5.1). [Pg.73]

In any reaction where the cleavage of a carbon-hydrogen bond is important, the introduction of a metal ion into the molecule in the proper position will facilitate reaction. For example, in the elimination of the elements of a phosphoric acid monoester from the molecule below, the electrostatic attraction of the cupric ion facilitates removal of the proton on the o -carbon atom with subsequent elimination of the phosphoryl residue (8). [Pg.35]

Considerable insight into the future of selective reactions of elemental fluorine may be gleaned from consideration of the thermodynamics and kinetic factors of the low-temperature reactions of elemental fluorine. As is stated earlier, there is, under normal circumstances, no selectivity of the reactions of fluorine with carbon-hydrogen bonds and most other bonds at room tempera-... [Pg.205]

The (5)-tryptophan-derived oxazaborolidenes utilized in this aldol study have been previously examined by Corey as effective catalysts for enantioselective Diels-Alder cycloaddition reactions [6]. Corey has documented unique physical properties of the complex and has proposed that the electron-rich indole participates in stabilizing a donor-acceptor interaction with the metal-bound polarized aldehyde. More recently, Corey has formulated a model exemplified by 7 in which binding by the aldehyde to the metal is rigidified through the formation of a hydrogen-bond between the polarized formyl C-H and an oxyanionic ligand [7], The model illustrates the sophisticated design elements that can be incorporated into the preparation of transition-metal complexes that lead to exquisite control in aldehyde enantiofacial differentiation. [Pg.514]


See other pages where Reactions Into Element-Hydrogen Bonds is mentioned: [Pg.29]    [Pg.551]    [Pg.553]    [Pg.332]    [Pg.1291]    [Pg.530]    [Pg.31]    [Pg.122]    [Pg.74]    [Pg.156]    [Pg.644]    [Pg.98]    [Pg.89]    [Pg.259]    [Pg.498]    [Pg.410]    [Pg.218]    [Pg.356]    [Pg.1287]   


SEARCH



Bonded elements

Bonding elements

Elemental Bonds

Elemental Reactions

Elements bonds)

Elements hydrogen

Hydrogen elemental

© 2024 chempedia.info