Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction stoichiometry acid-base titrations

According to Chapter 11, an acid is a substance that upon dissolving in water increases the concentration of hydronium (H30 ) ions above the value found in pure water, and a base is a substance that increases the concentration of hydroxide (OH ) ions above its value in pure water. Despite the careful language, it is commonplace to view acids and bases as substances that dissociate to give protons (which upon hydration become hydronium ions) and hydroxide ions, respectively. If the dissociation is complete, we can easily calculate the concentration of hydronium and hydroxide ions in the solution and then calculate the yield of acid-base neutralization reactions, and acid-base titrations, by the methods of stoichiometry in solution. But experience shows that many acid-base reactions do not go to completion. So, to predict the amount (or concentration) of... [Pg.625]

The accuracy of a standardization depends on the quality of the reagents and glassware used to prepare standards. For example, in an acid-base titration, the amount of analyte is related to the absolute amount of titrant used in the analysis by the stoichiometry of the chemical reaction between the analyte and the titrant. The amount of titrant used is the product of the signal (which is the volume of titrant) and the titrant s concentration. Thus, the accuracy of a titrimetric analysis can be no better than the accuracy to which the titrant s concentration is known. [Pg.106]

The discussion of acid-base titrations in Chapter 4 focused on stoichiometry. Here, the emphasis is on the equilibrium principles that apply to the acid-base reactions involved. It is convenient to distinguish between titrations involving—... [Pg.394]

Acid-base titration The stoichiometry of an acid-hase neutralization reaction is the same as that of any other reaction that occurs in solution. In the antacid reaction you just read about, one mole of magnesium hydroxide neutralizes two moles of hydrochloric acid. [Pg.618]

Reaction Stoichiometry in Solutions Acid-Base Titrations... [Pg.441]

In Example 14-1, we generated an acid/base titration curve from the reaction stoichiometry. We can show that all points on the curve can also be calculated from the charge-balance equation. [Pg.375]

The equivalence point in a titration is defined by the stoichiometry of the reaction. The end point is the abrupt change in a physical property (such as pH) that we measure to locate the equivalence point. Indicators and pH measurements are commonly used to find the end point in an acid-base titration. [Pg.216]

Certain aqueous reactions are useful for determining how much of a particular substance is present in a sample. For example, if we want to know the concentration of lead in a sample of water, or if we need to know the concentration of an acid, knowledge of precipitation reactions, acid-base reactions, and solution stoichiometry will be useful. Two common types of such quantitative analyses are gravimetric analysis and acid-base titration. [Pg.142]

Acid-Base Titrations We can apply the principles of acid-base neutralization and stoichiometry to a common laboratory procedure called a titration. In a titration, a substance in a solution of known concentration is reacted with another substance in a solution of unknown concentration. For example, consider the following acid-base reaction ... [Pg.171]

We first examined acid-base titrations in Section 4.8. In an acid-base titration, a basic (or acidic) solution of unknown concentration reacts with an acidic (or basic) solution of known concentration. The known solution is slowly added to the unknown one while the pH is monitored with either a pH meter or an indicator (a substance whose color depends on the pH). As the acid and base combine, they neutralize each other. At the equivalence point—the point in the titration when the number of moles of base is stoichiometrically equal to the number of moles of acid—the titration is complete. When the equivalence point is reached, neither reactant is in excess and the number of moles of the reactants are related by the reaction stoichiometry (Figure 16.5 t). [Pg.769]

We can predict the pH at any point in the titration of a polyprotic acid with a strong base by using the reaction stoichiometry to recognize what stage we have reached in the titration. We then identify the principal solute species at that point and the principal proton transfer equilibrium that determines the pH. [Pg.585]

By plotting i versus the ratio R = (CHX)t/(CB)t during the titration, they determined simultaneously the extent of acid-base interaction, the stoichiometry of that interaction and the degree of association of the acid-base adduct. Fig. 4.13 shows hypothetical titration curves line ABC corresponds to the interaction between B and HX as monomers without further reaction between BHX and HX, and the subsequent occurrence of the latter reaction to a small extent is indicated by the line ABC and to the full extent by line ABDE, when no more HX can react with BHX HX line AFDE arises when formation of BHX HX starts right away in the case of previous partial dimerization of B, the various lines will begin at A instead of A. [Pg.286]

We can predict the pH at any point in the titration of a polyprotic acid with a strong base (see Toolbox 11.1). First, we have to consider the reaction stoichiometry to recognize what stage we have reached in the titration. Next we have to identify the principal solute species at that point and the proton transfer equilibrium that determines the pH. We then carry out the calculation appropriate for the solution, referring to the previous worked examples if necessary. In this section, we see how to describe the solution at various stages of the titration our conclusions are summarized in Tables 11.3 and 11.4. [Pg.672]

Titration — A process for quantitative analysis in which measured increments of a - titrant are added to a solution of an - analyte until the reaction between the analyte and titrant is considered as complete at the - end point [i]. The aim of this process is to determine the amount of an analyte in a -> sample. In addition, the determination can involve the measurement of one or several physical and/or chemical properties from which a relationship between the measured parameter/s and the concentration of the analyte is established. It is also feasible to measure the amount of a - titrand that is added to react with a fixed volume of titrant. In both cases, the -> stoichiometry of the reaction must be known. Additionally, there has to be a means such as a -> titration curve or an - indicator to recognize that the -> end point has been reached. The nature of the reaction between the titrant and the analyte is commonly indicated by terms like acid-base, complexometric, redox, precipitation, etc. [ii]. Titrations can be performed by addition of measured volume/mass increments of a solution,... [Pg.676]

Chemical reactions are frequently carried out in solution, and their description requires modifications to the rules of stoichiometry described in Chapter 2. We illustrate these modified rules by the important analytical techniques of titration in acid-base and oxidation-reduction reactions. [Pg.442]

Titrations are widely used in analytical chemistry to determine acids, bases, oxidants, reductants, metal ions, proteins, and many other species. Titrations are based on a reaction between the analyte and a standard reagent known as the titrant. The reaction is of known and reproducible stoichiometry. The volume, or the mass, of the titrant needed to react essentially completely with the analyte is determined and used to obtain the quantity of analyte. A volume-based titration is shown in this figure, in which the standard solution is added from a buret, and the reaction occurs in the Erlenmeyer flask. In some titrations, known as coulometric titrations, the quantity of charge needed to completely consume the analyte is obtained. In any titration, the point of chemical equivalence, experimentally called the end point, is signaled by an indicator color change or a change in an instrumental response. [Pg.337]

Redox titrations require the same type of calculations (based on the mole method) as acid-base neutralizations. The difference is that the equations and the stoichiometry tend to be more complex for redox reactions. The following is an example of a redox titration. [Pg.141]

Sketch the titration curve for a weak acid titrated by a strong base. When performing calculations concerning weak acid-strong base titrations, the general two-step procedure is to solve a stoichiometry problem first, then to solve an equilibrium problem to determine the pH. What reaction takes place in the stoichiometry part of the problem What is assumed about this reaction ... [Pg.735]

Stoichiometry of Reactions in Aqueous Solutions Titrations— A common laboratory technique applicable to precipitation, acid-base, and redox reactions is titration. The key point in a titration is the equivalence point, which can be observed with the aid of an indicator. Titration data can be used to establish a solution s molarity, called standardization of a solution, or to provide other information about the compositions of samples being analyzed. [Pg.183]

The concentration of an acid or a base may be determined by titrating a solution of an unknown concentration with a solution of a known concentration. (See the chapter on Reactions and Periodicity and the chapter on Stoichiometry.)... [Pg.286]

However if you carry out a titration neutralising, say, 25 0 cm of 010 mol 1" NaOH(aq) you would find that 25 cm of either 0-10 mol 1 HCl(aq) or 010 mol 1" CHjCOOHfaq) would be required. We say that strong and weak acids do not differ in the stoichiometry of their reactions. The same is true for strong and weak bases. [Pg.33]

The seobutyllithium was purchased from Alfa Products, Ventron Corp., and standardized by double titration or diphenylacetic acid titration. Other alkyllithium bases such as butyllithium and methyllithium cannot be substituted for the stronger sec-butyllithium since larger amounts of bomylene are formed because of incomplete dianion formation. Careful attention must be paid to stoichiometry in this reaction failure to do so also results in increasing the amount of bomylene formed. [Pg.161]

Whenever you perform a titration calculation, be sure that you have taken into account the stoichiometry of the reaction between the acid and base (use the balanced chemical equation). In this case, two moles of NaOH are required to neutralize each mole of acid. Furthermore, when performing titration calculations, do not be tempted to apply the dilution equation to solve the problem. If you were to take such an approach here, you would arrive at an incorrect result since the dilution equation fails to take into account the stoichiometry of the reaction. [Pg.161]

As we learned in the discussion of the stoichiometry of titration reactions (Section 5-7), the equivalence point of a neutralization reaction is the point at which both acid and base have been consumed and neither is in excess. [Pg.807]


See other pages where Reaction stoichiometry acid-base titrations is mentioned: [Pg.3]    [Pg.696]    [Pg.674]    [Pg.450]    [Pg.665]    [Pg.184]    [Pg.38]    [Pg.256]    [Pg.749]    [Pg.138]    [Pg.39]    [Pg.400]   
See also in sourсe #XX -- [ Pg.449 , Pg.450 , Pg.451 ]




SEARCH



Acid base reactions

Acid-base reactions titrations

Acid-base stoichiometry

Acid-base titrations

Acidity, titration

Acids acid-base titrations

Acids titrations

Base stoichiometry

Bases acid-base titrations

Bases titrations

Bases, acid-base reactions

Reaction Stoichiometry in Solutions Acid-Base Titrations

Reaction stoichiometry

Titratable acid

Titratable acidity

Titration reactions

Titration stoichiometry

© 2024 chempedia.info