Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rates molecular mechanism

Have you noticed that during discussions of chemical equilibria, reaction direction, spontaneity, and other topics there is no mention of how fast a reaction proceeds Even the chapter on thermodynamics does not investigate the rate of reaction. As a matter of fact, many texts specifically state that rate of reaction is not tied to thermodynamic considerations. The branch of chemistry that treats the rates of reactions is chemical kinetics. There are two main objectives in this chapter. The first objective is to provide a systematic approach for dealing with data relating to the dependence of the rates of reactions on controllable variables. The second objective is to show the relationship between reaction rate and the reaction s molecular mechanism. [Pg.347]

Nanoreactors also can be eqnipped with active sites such as transitional metal species. In this case, the restricted space in the NR can affect reaction rate and mechanism throngh additional interactions of the reactants and active sites and modihcation of the concentration of the reactant close to the active site [9]. In this context, immobilization of chiral active centers within porous materials has attracted much attention and there are numerous reports confirming the merit of nanospace confinement in the chemical reactions. Molecular dynamics simulations have been used to clarify the precise way in which enantioselectivities are enhanced [12],... [Pg.3]

Linear regression of one-electron reduction potentials (which are proportional to free energies for electron transfer reactions) with log kohs values for the transformation of 8 halogenated aliphatic compoimds by FeS produced only a weak LFER (R =0.48) (7 7). The poor R value and the small slope of the LFER were attributed to several factors, including the influence of thermodynamic or molecular parameters other than one-electron reduction potentials on reaction rates, different mechanisms of adsorption to the FeS surface for different pollutants, different reaction mechanisms at the FeS surface, and/or significant adsorption of certain pollutants to non-reactive FeS surface sites (77). [Pg.123]

The central idea of TPS now is to generate reactive trajectories with a frequency proportional to their probability in the TPE of (50). The generated pathways can then be further analyzed to yield information on reaction rates and mechanisms. One way to sample the TPE is by a MC procedure. In this approach, which is analogous to the MC simulation of, say, a molecular liquid, a random walk through trajectory space... [Pg.202]

Progress in the theoretical description of reaction rates in solution of course correlates strongly with that in other theoretical disciplines, in particular those which have profited most from the enonnous advances in computing power such as quantum chemistry and equilibrium as well as non-equilibrium statistical mechanics of liquid solutions where Monte Carlo and molecular dynamics simulations in many cases have taken on the traditional role of experunents, as they allow the detailed investigation of the influence of intra- and intemiolecular potential parameters on the microscopic dynamics not accessible to measurements in the laboratory. No attempt, however, will be made here to address these areas in more than a cursory way, and the interested reader is referred to the corresponding chapters of the encyclopedia. [Pg.832]

A transition structure is the molecular species that corresponds to the top of the potential energy curve in a simple, one-dimensional, reaction coordinate diagram. The energy of this species is needed in order to determine the energy barrier to reaction and thus the reaction rate. A general rule of thumb is that reactions with a barrier of 21 kcal/mol or less will proceed readily at room temperature. The geometry of a transition structure is also an important piece of information for describing the reaction mechanism. [Pg.147]

Nitric acid being the solvent, terms involving its concentration cannot enter the rate equation. This form of the rate equation is consistent with reaction via molecular nitric acid, or any species whose concentration throughout the reaction bears a constant ratio to the stoichiometric concentration of nitric acid. In the latter case the nitrating agent may account for any fraction of the total concentration of acid, provided that it is formed quickly relative to the speed of nitration. More detailed information about the mechanism was obtained from the effects of certain added species on the rate of reaction. [Pg.8]

Kinetics and Mechanisms. Early researchers misunderstood the fast reaction rates and high molecular weights of emulsion polymerization (11). In 1945 the first recognized quaHtative theory of emulsion polymerization was presented (12). This mechanism for classic emulsion preparation was quantified (13) and the polymerization separated into three stages. [Pg.23]

The mechanism of the synthesis reaction remains unclear. Both a molecular mechanism and an atomic mechanism have been proposed. Strong support has been gathered for the atomic mechanism through measurements of adsorbed nitrogen atom concentrations on the surface of model working catalysts where dissociative N2 chemisorption is the rate-determining step (17). The likely mechanism, where (ad) indicates surface-adsorbed species, is as follows ... [Pg.84]

An example of the application of molecular mechanics in the investigation of chemical reactions is a study of the correlation between steric strain in a molecule and the ease of rupture of carbon-carbon bonds. For a series of hexasubstituted ethanes, it was found that there is a good correlation between the strain calculated by the molecular mechanics method and the rate of thermolysis. Some of the data are shown in Table 3.3. [Pg.129]

The possibility of a radical mechanism is supported by the observation of the accelerating effect of molecular oxygen on the cyclopropanation. Miyano et al. discovered that the addition of dioxygen accelerated the formation of the zinc carbenoid in the Furukawa procedure [24a, b]. The rate of this process was monitored by changes in the concentration of ethyl iodide, the by-product of reagent formation. Comparison of the reaction rate in the presence of oxygen with that in the... [Pg.92]

It is concluded [634] that, so far, rate measurements have not been particularly successful in the elucidation of mechanisms of oxide dissociations and that the resolution of apparent outstanding difficulties requires further work. There is evidence that reactions yielding molecular oxygen only involve initial interaction of ions within the lattice of the reactant and kinetic indications are that such reactions are not readily reversed. For those reactions in which the products contain at least some atomic oxygen, magnitudes of E, estimated from the somewhat limited quantity of data available, are generally smaller than the dissociation enthalpies. Decompositions of these oxides are not, therefore, single-step processes and the mechanisms are probably more complicated than has sometimes been supposed. [Pg.146]

The importance of solvation on reaction surfaces is evident in striking medium dependence of reaction rates, particularly for polar reactions, and in variations of product distributions as for methyl formate discussed above and of relative reactivities (18,26). Thus, in order to obtain a molecular level understanding of the influence of solvation on the energetics and courses of reactions, we have carried out statistical mechanics simulations that have yielded free energy of activation profiles (30) for several organic reactions in solution (11.18.19.31. ... [Pg.211]

When a reaction proceeds in a single elementary step, its rate law will mirror its stoichiometry. An example is the rate law for O3 reacting with NO. Experiments show that this reaction is first order in each of the starting materials and second order overall NO + 03- NO2 + O2 Experimental rate = i [N0][03 J This rate law is fully consistent with the molecular view of the mechanism shown in Figure 15-7. If the concentration of either O3 or NO is doubled, the number of collisions between starting material molecules doubles too, and so does the rate of reaction. If the concentrations of both starting materials are doubled, the collision rate and the reaction rate increase by a factor of four. [Pg.1062]

Stable and radioactive tracers have been used extensively in catalysis to validate reaction networks, test for intermediates, confirm reaction orders, distinguish between intra- and inter-molecular mechanisms, establish rate limiting steps, docviment direct participation of surface atoms in fluid-solid reactions, etc. A unique feature of tracer studies is that Individual reaction steps can be followed in a complicated set of reactions without perturbing the chemical composition of the... [Pg.88]

It is important to realize that the reaction rate may represent the overall summation of the effect of many individual elementary reactions, and therefore only rarely represents a particular molecular mechanism. The orders of reaction, a or p, can not be assumed from the stoichiometric equation and must be determined experimentally. [Pg.53]

A key question in the action of enzymes is the understanding of the mechanisms by which they attain their catalytic rate enhancement relative to the uncatalyzed reactions. Some enzymes have been shown to produce rate accelerations as large as 1019 [1], The theoretical determination of the reaction mechanisms by which enzymes carry out the chemical reactions has been an area of great interests and intense development in recent years [2-11], A common approach for the modeling of enzyme systems is the QM/MM method proposed by Warshel and Levitt [12], In this method the enzyme is divided into two parts. One part includes the atoms or molecules that participate in the chemical process, which are treated by quantum mechanical calculations. The other contains the rest of the enzyme and the solvent, generally thousands of atoms, which is treated by molecular mechanics methods. [Pg.58]

Thus far we have explored the field of classical thermodynamics. As mentioned previously, this field describes large systems consisting of billions of molecules. The understanding that we gain from thermodynamics allows us to predict whether or not a reaction will occur, the amount of heat that will be generated, the equilibrium position of the reaction, and ways to drive a reaction to produce higher yields. This otherwise powerful tool does not allow us to accurately describe events at a molecular scale. It is at the molecular scale that we can explore mechanisms and reaction rates. Events at the molecular scale are defined by what occurs at the atomic and subatomic scale. What we need is a way to connect these different scales into a cohesive picture so that we can describe everything about a system. The field that connects the atomic and molecular descriptions of matter with thermodynamics is known as statistical thermodynamics. [Pg.77]


See other pages where Reaction rates molecular mechanism is mentioned: [Pg.249]    [Pg.348]    [Pg.128]    [Pg.393]    [Pg.682]    [Pg.349]    [Pg.152]    [Pg.664]    [Pg.2059]    [Pg.2938]    [Pg.197]    [Pg.275]    [Pg.221]    [Pg.3]    [Pg.268]    [Pg.92]    [Pg.114]    [Pg.123]    [Pg.130]    [Pg.311]    [Pg.338]    [Pg.86]    [Pg.290]    [Pg.283]    [Pg.225]    [Pg.88]    [Pg.216]    [Pg.149]    [Pg.123]    [Pg.90]   
See also in sourсe #XX -- [ Pg.713 , Pg.714 , Pg.715 , Pg.716 , Pg.717 ]




SEARCH



Rate mechanism

Reaction mechanism molecularity

Reaction molecular

© 2024 chempedia.info