Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rate theory atmospheres

The next chapter reviews the reactions of free atoms and radicals which play an important role in the modeling of complex processes occurring in the polluted atmosphere and in combustion chemistry. J. Jodkowski discusses the computational models of the reaction rate theory most frequently used in the theoretical analysis of gas-phase reaction kinetics and presents examples of the reactions of reactive components of the polluted atmosphere, such as 02, NOx, OH, NH2, alkyl radicals, and halogen atoms. Kinetic parameters of the reactions under investigation are provided in an analytical form convenient for kinetic modeling studies. The presented expressions allow for a successful description of the kinetics of the reaction systems in a wide temperature range and could be used in kinetic studies of related species. [Pg.343]

The Eyring surface erosion model was applied together with the general absolute reaction rate theory to the rate of mass loss of meteors as they pass through the atmosphere. Atmospheric erosion of the heat shield of space vehicles upon reentry is a problem of great importance to which this theory is directly applicable. [Pg.786]

Another arena for the application of stochastic frictional approaches is the influence of ionic atmosphere relaxation on the rates of reactions in electrolyte solutions [19], To gain perspective on this, we first recall the early and often quoted triumph of TST for the prediction of salt effects, in connection with Debye-Hiickel theory, for reaction rates In kTST varies linearly with the square root of the solution ionic strength I, with a sign depending on whether the charge distribution of the transition state is stabilized or destabilized by the ionic atmosphere compared to the reactants. [Pg.251]

In Table 1 (pp. 251-254), IM rate constants for reaction systems that have been measured at both atmospheric pressure and in the HP or LP range are listed. Also provided are the expected IM collision rate constants calculated from either Langevin or ADO theory. (Note that the rate constants of several IM reactions that have been studied at atmospheric pressure" are not included in Table I because these systems have not been studied in the LP or HP ranges.) In general, it is noted that pressure-related differences in these data sets are not usually large. Where significant differences are noted, the suspected causes have been previously discussed in Section IIB. These include the reactions of Hcj and Ne with NO , for which pressure-enhanced reaction rates have been attributed to the onset of a termolecular collision mechanism at atmospheric pressure and the reactions of Atj with NO and Cl with CHjBr , for which pressure-enhanced rate constants have been attributed to the approach of the high-pressure limit of kinetic behavior for these reaction systems. [Pg.254]

Oxidation of hydrocarbons has long been considered as a fundamental problem to atmospheric chemists, both from experimental and theoretical points of view, because of the inherent complexity. The reaction kinetics and mechanism of atmospheric hydrocarbons have been the focuses of numerous researches in both experimental and theoretical aspects. Although advances have been made in elucidation of the VOC oxidation mechanisms, large uncertainty and tremendous numbers of unexplored reactions still remain. Several review articles on the atmospheric degeneration of VOCs have been published [4,11-14]. In this review, recent advances in the application of theoretical methods to the atmospheric oxidation of biogenic hydrocarbons are discussed. We will introduce the backgrounds on the quantum chemical calculations and kinetic rate theories, recent progress on theoretical studies of isoprene and a-, y3-pinenes, and studies on other monoter-penes and sesquiterpenes. [Pg.178]

The results of the rate constant calculations by d Anna et al,156 seem to confirm this reaction mechanism. In Fig. 25 is shown the temperature dependence of the observed and calculated rate constants. The rate constant k describes the rate of formation of the post-reaction adduct under the assumption that the pre-reactive adducts are not stabilized by collisions, whereas kadd describes the kinetics of formation of the stable pre-reactive complexes at a total pressure of 1 bar. Thus the overall rate constant for the decay of reactants (denoted in the figure by a solid line) is given by the sum k + k. The values of k predicted by d Anna et al.156 distinctly underestimate the reaction rate at low temperatures, but they approach the results of measurements at temperatures above 700 K. The limiting rate constants kadd, and kadd,0 for the addition channels were analyzed in terms of statistical unimolecular rate theory. Results of the calculations show a fall-off behavior of the reaction kinetics under typical atmospheric conditions corresponding to a total pressure of 1 bar. Therefore, all kadd values were derived from the... [Pg.187]

The calculation of theoretical rate constants for gas-phase chemical reactions involved in atmospheric chemistry is a subject of great interest. Theoretical kinetic methodologies utilize the quantum chemical characterization of the stationary points along the PES of a reaction to calculate the rate constants and product distributions. These methods allow for the elucidation of rate constants over the temperature and pressure range in the atmosphere. Various theoretical methods are available for rate constant calculations. Here, we focus on transition state theory (TST) and its variants to calculate the reaction rate constants. [Pg.487]

The results discussed in the previous section reveal that the reaction rate corresponding to the formation of major by-products of the oxidation reaction is important to determine the lifetime of dimethylphenol in the atmosphere. The rate constants are calculated using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) corrections over the temperature range of 278-350 K. As described in Figure 19.2, the formation of product channels consists of four reaction channels. The rate constants for the formation of alkyl radical (11), peroxy radical (12), m-cresol and the product channels are designated as k, ki2, and kp, respectively, and are summarized in Tables 19.2 and 19.3. The reaction path properties and rate constant obtained for the most favorable product channels, P5 and P6, are discussed in detail. [Pg.502]

Copper has the most pronounced effect of any of the individual elements in decreasing the corrosion rate. An increase in the copper content from 0.1 to 0.4% decreases the corrosion rate by up to 70%. Only a slight improvement in the corrosion resistance results from an increase of copper in the range 0.2-0.5%. Several theories have been proposed regarding the mechanisms by which copper improves the corrosion resistance. One theory is that the beneficial effect is due to the formation of a surface coating of metallic copper that acts either as protection on itself or promotes anodic passivation by supporting the cathodic reaction. Another theory is that copper ions dissolved from the base metal are able to precipitate sulfide ions originating either from sulfide inclusions in the steel or from the atmospheric pollution, and thus eliminate their detrimental effect. The most probable theory is that copper forms basic sulfates with low solubility that precipitate within the... [Pg.76]

Is best used for representing the pressure dependence of the termolecular reaction rate constant. This equation is based on the curve fitting to the pressure dependence of the unimolecular decomposition rate by the Kassel theory. In Eq. (2.54), is called a broadening factor, and it is a good experimental fitting for many termolecular reactions in atmospheric chemistry has been obtained by taking e.g. Fp = 0.6. The curve (b) in Fig. 2.9 shows the schematic pressure dependence... [Pg.33]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Simple collision theory recognizes that a collision between reactants is necessary for a reaction to proceed. Does every collision result in a reaction Consider a 1 mL sample of gas at room temperature and atmospheric pressure. In the sample, about 10 collisions per second take place between gas molecules. If each collision resulted in a reaction, all gas phase reactions would be complete in about a nanosecond (10 s)—a truly explosive rate As you know from section 6.2, however, gas phase reactions can occur quite slowly. This suggests that not every collision between reactants results in a reaction. [Pg.290]


See other pages where Reaction rate theory atmospheres is mentioned: [Pg.139]    [Pg.185]    [Pg.252]    [Pg.18]    [Pg.38]    [Pg.406]    [Pg.210]    [Pg.22]    [Pg.360]    [Pg.425]    [Pg.136]    [Pg.203]    [Pg.41]    [Pg.6]    [Pg.483]    [Pg.81]    [Pg.66]    [Pg.230]    [Pg.259]    [Pg.74]    [Pg.4]    [Pg.165]    [Pg.182]    [Pg.162]    [Pg.523]    [Pg.104]    [Pg.194]    [Pg.507]    [Pg.170]    [Pg.521]    [Pg.256]    [Pg.9]    [Pg.25]    [Pg.65]    [Pg.5]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Atmospheric chemistry reaction rate theory

Atmospheric reactions

Rate Theory

Reaction rate theory

© 2024 chempedia.info