Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constants limitations

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
Aside from merely calculational difficulties, the existence of a low-temperature rate-constant limit poses a conceptual problem. In fact, one may question the actual meaning of the rate constant at r = 0, when the TST conditions listed above are not fulfilled. If the potential has a double-well shape, then quantum mechanics predicts coherent oscillations of probability between the wells, rather than the exponential decay towards equilibrium. These oscillations are associated with tunneling splitting measured spectroscopically, not with a chemical conversion. Therefore, a simple one-dimensional system has no rate constant at T = 0, unless it is a metastable potential without a bound final state. In practice, however, there are exchange chemical reactions, characterized by symmetric, or nearly symmetric double-well potentials, in which the rate constant is measured. To account for this, one has to admit the existence of some external mechanism whose role is to destroy the phase coherence. It is here that the need to introduce a heat bath arises. [Pg.20]

The lack of precise measurements of environmentally relevant chemical rate constants limits the number of quantitative evaluations of the importance of complex dynamics on uptake fluxes. Nonetheless, examples involving bicarbon-ate-CC>2 conversion [69,88] and trace metal complexation [8,46,325] have been examined theoretically in the literature. For example, comparison of the diffu-sional and reactional timescale allowed Riebesell and collaborators [69,88] to show that bicarbonate conversion to CO2 did not generally enhance the... [Pg.503]

There are many reactions that show this characteristic behavior of reactivities and thus rate constants limited by collision complex liftetime at low temperatures or energies and increasing toward higher temperatures as a result of the appearance of direct endoergic channels. [Pg.255]

Termolecular rate constants ( ) limiting low-pressure rate constants) ... [Pg.351]

The correct treatment of the mechanism (equation (A3.4.25), equation (A3.4.26) and equation (A3.4.27), which goes back to Lindemann [18] and Hinshelwood [19], also describes the pressure dependence of the effective rate constant in the low-pressure limit ([M] < [CHoNC], see section A3.4.8.2). [Pg.766]

Figure A3.4.9. Pressure dependence of the effective unimolecular rate constant. Schematic fall-off curve for the Lindemaim-FIinshelwood mechanism. A is the (constant) high-pressure limit of the effective rate constant... Figure A3.4.9. Pressure dependence of the effective unimolecular rate constant. Schematic fall-off curve for the Lindemaim-FIinshelwood mechanism. A is the (constant) high-pressure limit of the effective rate constant...
It is important to recognize that the time-dependent behaviour of tire correlation fimction during the molecular transient time seen in figure A3.8.2 has an important origin [7, 8]. This behaviour is due to trajectories that recross the transition state and, hence, it can be proven [7] that the classical TST approximation to the rate constant is obtained from A3.8.2 in the t —> 0 limit ... [Pg.886]

It should be noted that in the cases where y"j[,q ) > 0, the centroid variable becomes irrelevant to the quantum activated dynamics as defined by (A3.8.Id) and the instanton approach [37] to evaluate based on the steepest descent approximation to the path integral becomes the approach one may take. Alternatively, one may seek a more generalized saddle point coordinate about which to evaluate A3.8.14. This approach has also been used to provide a unified solution for the thennal rate constant in systems influenced by non-adiabatic effects, i.e. to bridge the adiabatic and non-adiabatic (Golden Rule) limits of such reactions. [Pg.893]

Straub J E and Berne B J 1986 Energy diffusion in many dimensional Markovian systems the consequences of the competition between inter- and intra-molecular vibrational energy transfer J. Chem. Phys. 85 2999 Straub J E, Borkovec M and Berne B J 1987 Numerical simulation of rate constants for a two degree of freedom system in the weak collision limit J. Chem. Phys. 86 4296... [Pg.897]

Note that in the low pressure limit of iinimolecular reactions (chapter A3,4). the unimolecular rate constant /fu is entirely dominated by energy transfer processes, even though the relaxation and incubation rates... [Pg.1053]

An important point about kinetics of cyclic reactions is tliat if an overall reaction proceeds via a sequence of elementary steps in a cycle (e.g., figure C2.7.2), some of tliese steps may be equilibrium limited so tliat tliey can proceed at most to only minute conversions. Nevertlieless, if a step subsequent to one tliat is so limited is characterized by a large enough rate constant, tlien tire equilibrium-limited step may still be fast enough for tire overall cycle to proceed rapidly. Thus, tire step following an equilibrium-limited step in tire cycle pulls tire cycle along—it drains tire intennediate tliat can fonn in only a low concentration because of an equilibrium limitation and allows tire overall reaction (tire cycle) to proceed rapidly. A good catalyst accelerates tire steps tliat most need a boost. [Pg.2700]

However, as can be seen from Figure 8 a simple exponential expected from first-order kinetics can be fitted to the data yielding a limiting concentration of 0.005, and a rate constant of 0.0003 a.u., which translates to 1.25 x 10 s at 300 K. [Pg.247]

For 5=1, the normal transition state theory rate constant is independent of temperature at high temperatures and varies exponentially with temperature in the limit of low temperatures kT small compared with the barrier height U ) as... [Pg.208]

Studies by the group directed by Mayoral have been limited to Diels-Alder reactions of type A. When water was not included, the rate constants correlate with the solvent hydrogen-bond-donating capacity Upon inclusion of water the solvophobidty parameter, Sp, contributed significantly in... [Pg.9]

For a base the stoichiometric second-order rate constant which should be observed, imder conditions where ionisation to the nitronium ion is virtually complete, namely > 90 % H2SO4, if nitration were limited to the free base and occurred at every encounter with a nitronium ion, would be ... [Pg.154]

The log(k/ko) value for 4-isopropyl-2,5-dimethylthiazole is twice that expected if the curve were linear, which implies a rate constant 6.5 times smaller than expected. This result can be explained by the existence of a privileged conformation, induced by the presence of the methyl group in the 5-position and that has a lower reactivity (258). This result also leads to a limitation in the use of Tafts Eg parameter to cases where the environment of a substituent does not induce particular conformation for this latter (258). [Pg.389]

Newtonian behavior the rate of shear is small compared to the rate constant for the flow process. When molecular displacements occur very much faster than the rate of shear (7 < kj ), the molecules show maximum efficiency in dissipating the applied forces. When the molecules cannot move fast enough to keep pace with the external forces, they couple with and dissipate those forces to a lesser extent. Thus there is a decrease in viscosity from its upper, Newtonian limit with increasing 7/kj. The rate constant for the flow process is therefore seen to define a standard against which the rate of shear is to be judged large or small. In the next section we shall consider a molecular model in terms of which this rate constant can be analyzed. [Pg.87]

The following conditions are stipulated the catalyst decomposition rate constant must be one hour or greater the residence time of the continuous reactor must be sufficient to decompose the catalyst to at least 50% of the feed level the catalyst concentration must be greater than or equal to 0.002 x Q, where the residence time, is expressed in hours. An upper limit on the rate of radical formation was also noted that is, when the rate of radical formation is greater than the addition rate of the primary radicals to the monomers, initiation efficiency is reduced by the recombination of primary radicals. [Pg.280]


See other pages where Rate constants limitations is mentioned: [Pg.553]    [Pg.71]    [Pg.3102]    [Pg.965]    [Pg.553]    [Pg.71]    [Pg.3102]    [Pg.965]    [Pg.830]    [Pg.831]    [Pg.843]    [Pg.848]    [Pg.850]    [Pg.851]    [Pg.885]    [Pg.1013]    [Pg.1018]    [Pg.1021]    [Pg.1027]    [Pg.1034]    [Pg.1099]    [Pg.1351]    [Pg.2120]    [Pg.2421]    [Pg.2947]    [Pg.2947]    [Pg.2953]    [Pg.18]    [Pg.164]    [Pg.117]    [Pg.316]   
See also in sourсe #XX -- [ Pg.72 , Pg.73 ]




SEARCH



Diffusion-limited rate constant Debye theory

Heterogeneous rate constant, upper limit

High pressure limiting rate constant

High-pressure limit rate constant

Low pressure limiting rate constant

Low-pressure limit rate constant

Low-temperature limit of rate constants

Molecular activation-limited rate constant

Rate constant diffusion-limited

Rate constants) value, upper limiting

Rate limitations

Rate limiting

Reaction constant rate-limiting step and

The Limiting First-Order Rate Constant

Volatilization rate constant limit

© 2024 chempedia.info