Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction parameters flow reactors

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

The differential reactor is simple to construct and inexpensive. However, during operation, care must be taken to ensure that the reactant gas or liquid does not bypass or channel through the packed catalyst, but instead flows uniformly across the catalyst. This reactor is a poor choice if the catalyst decays rapidly, since the rate of reaction parameters at the start of a run will be different from those at the end of the run. [Pg.245]

In Fig. 28, the abscissa kt is the product of the reaction rate constant and the reactor residence time, which is proportional to the reciprocal of the space velocity. The parameter k co is the product of the CO inhibition parameter and inlet concentration. Since k is approximately 5 at 600°F these three curves represent c = 1, 2, and 4%. The conversion for a first-order kinetics is independent of the inlet concentration, but the conversion for the kinetics of Eq. (48) is highly dependent on inlet concentration. As the space velocity increases, kt decreases in a reciprocal manner and the conversion for a first-order reaction gradually declines. For the kinetics of Eq. (48), the conversion is 100% at low space velocities, and does not vary as the space velocity is increased until a threshold is reached with precipitous conversion decline. The conversion for the same kinetics in a stirred tank reactor is shown in Fig. 29. For the kinetics of Eq. (48), multiple solutions may be encountered when the inlet concentration is sufficiently high. Given two reactors of the same volume, and given the same kinetics and inlet concentrations, the conversions are compared in Fig. 30. The piston flow reactor has an advantage over the stirred tank... [Pg.119]

Example 9.6 Compare the nonisothermal axial dispersion model with piston flow for a first-order reaction in turbulent pipeline flow with Re= 10,000. Pick the reaction parameters so that the reactor is at or near a region of thermal runaway. [Pg.339]

In Fig. 1, a comparison can be observed for the prediction by the honeycomb reactor model developed with the parameters directly obtained from the kinetic study over the packed-bed flow reactor [6] and from the extruded honeycomb reactor for the 10 and 100 CPSI honeycomb reactors. The model with both parameters well describes the performance of both reactors although the parameters estimated from the honeycomb reactor more closely predict the experiment data than the parameters estimated from the kinetic study over the packed-bed reactor. The model with the parameters from the packed-bed reactor predicts slightly higher conversion of NO and lower emission of NHj as the reaction temperature decreases. The discrepancy also varies with respect to the reactor space velocity. [Pg.447]

The kinetic parameters estimated by the experimental data obtained frmn the honeycomb reactor along with the packed bed flow reactor as listed in Table 1 reveal that all the kinetic parameters estimated from both reactors are similar to each other. This indicates that the honeycomb reactor model developed in the present study can directly employ intrinsic kinetic parameters estimated from the kinetic study over the packed-bed flow reactor. It will significantly reduce the efibrt for predicting the performance of monolith and estimating the parameters for the design of the commercial SCR reactor along with the reaction kinetics. [Pg.447]

Based on the kinetic mechanism and using the parameter values, one can analyze the continuous stirred tank reactor (CSTR) as well as the dispersed plug flow reactor (PFR) in which the reaction between ethylene and cyclopentadiene takes place. The steady state mass balance equations maybe expressed by using the usual notation as follows ... [Pg.710]

Micro reactors are continuous-flow devices consuming small reaction volumes and allowing defined setting of reaction parameters and fast changes. Hence they are ideal tools for process screening and optimization studies to develop solution-based chemistries. [Pg.434]

Here X denotes lb-moles of benzene per lb-mole of pure benzene feed and x, denotes lb-moles of diphenyl per lb-mole of pure benzene feed. The parameters k, and k2 are unknown reaction rate constants whereas K, and K2 are known equilibrium constants. The data consist of measurements of Xi and x2 in a flow reactor at eight values of the reciprocal space velocity t. The feed to the reactor was pure benzene. The experimental data are given in Table 6.2 (in Chapter 6). The governing ODEs can also be written as ... [Pg.130]

Keairns and Manning AIChE J., 15 (660), 1969] have used the reaction between sodium thiosulfate and hydrogen peroxide in a well-stirred flow reactor to check a computer simulation of adiabatic CSTR operation. Data on their experimental conditions and the reaction parameters are listed below. The reaction may be considered second-order in sodium thiosulfate. [Pg.386]

We require a means to follow the progress of reaction, most commonly with respect to changing composition at fixed values of other parameters, such as T and catalytic activity. The method may involve intermittent removal of a sample for analysis or continuous monitoring of an appropriate variable measuring the extent of reaction, without removal of a sample. The rate itself may or may not be measured directly, depending on the type of reactor used. This may be a nonflow reactor, or a continuous-flow reactor, or one combining both of these characteristics. [Pg.5]

The primary use of chemical kinetics in CRE is the development of a rate law (for a simple system), or a set of rate laws (for a kinetics scheme in a complex system). This requires experimental measurement of rate of reaction and its dependence on concentration, temperature, etc. In this chapter, we focus on experimental methods themselves, including various strategies for obtaining appropriate data by means of both batch and flow reactors, and on methods to determine values of rate parameters. (For the most part, we defer to Chapter 4 the use of experimental data to obtain values of parameters in particular forms of rate laws.) We restrict attention to single-phase, simple systems, and the dependence of rate on concentration and temperature. It is useful at this stage, however, to consider some features of a rate law and introduce some terminology to illustrate the experimental methods. [Pg.42]

The RTD of a reactor is that of a fifth order Gamma distribution. First and second order reactions conducted there each attain C/C0 = 0.3. Find the two reaction parameters assuming segregated flow. [Pg.581]

The solution procedure to this equation is the same as described for the temporal isothermal species equations described above. In addition, the associated temperature sensitivity equation can be simply obtained by taking the derivative of Eq. (2.87) with respect to each of the input parameters to the model. The governing equations for similar types of homogeneous reaction systems can be developed for constant volume systems, and stirred and plug flow reactors as described in Chapters 3 and 4 and elsewhere [31-37], The solution to homogeneous systems described by Eq. (2.81) and Eq. (2.87) are often used to study reaction mechanisms in the absence of mass diffusion. These equations (or very similar ones) can approximate the chemical kinetics in flow reactor and shock tube experiments, which are frequently used for developing hydrocarbon combustion reaction mechanisms. [Pg.68]

As an excellent, simple example of how fluctuating parameters can affect a reacting system, one can examine how the mean rate of a reaction would differ from the rate evaluated at the mean properties when there are no correlations among these properties. In flow reactors, time-averaged concentrations and temperatures are usually measured, and then rates are determined from these quantities. Only by optical techniques or very fast response thermocouples could the proper instantaneous rate values be measured, and these would fluctuate with time. [Pg.216]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

In order to improve the catalytic TON, chemo-, and regioselectivity (in the case of monosubstituted alkynes), the reaction parameters have been systematically optimized for a large number of [YCoL] catalysts. This screening was performed in a continuous-flow reactor connected to a process chromatography set up (84MI12) (Fig. 1). [Pg.204]

Consider the following process for converting waste shredded fibers into a useful product. Fibers and fluid are fed continuously into a mixed flow reactor where they react according to the shrinking core model with the reaction step as rate controlling. Develop the performance expression for this operation as a function of the pertinent parameters and ignore elutri-ation. [Pg.606]

The viability of one particular use of a membrane reactor for partial oxidation reactions has been studied through mathematical modeling. The partial oxidation of methane has been used as a model selective oxidation reaction, where the intermediate product is much more reactive than the reactant. Kinetic data for V205/Si02 catalysts for methane partial oxidation are available in the literature and have been used in the modeling. Values have been selected for the other key parameters which appear in the dimensionless form of the reactor design equations based upon the physical properties of commercially available membrane materials. This parametric study has identified which parameters are most important, and what the values of these parameters must be to realize a performance enhancement over a plug-flow reactor. [Pg.427]


See other pages where Reaction parameters flow reactors is mentioned: [Pg.126]    [Pg.1098]    [Pg.682]    [Pg.708]    [Pg.54]    [Pg.228]    [Pg.433]    [Pg.632]    [Pg.308]    [Pg.99]    [Pg.304]    [Pg.134]    [Pg.51]    [Pg.4]    [Pg.160]    [Pg.161]    [Pg.57]    [Pg.170]    [Pg.101]    [Pg.215]    [Pg.399]    [Pg.400]    [Pg.401]    [Pg.403]    [Pg.424]    [Pg.62]    [Pg.259]    [Pg.229]    [Pg.204]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Flow parameter

Reaction parameter

Reactor Parameters

Reactors reaction

© 2024 chempedia.info