Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction order molecularity

REACTION ORDER MOLECULARITY. In the context of reaction rate equations, one can identify systems obeying the following mathematical forms ... [Pg.131]

In contrast to reaction order, molecularity is a parameter that applies specifically to elementary reactions. The molecularity is determined by the number of reactants in a reaction. Most gas phase reactions are bimolecular, such as the reaction discussed earlier,... [Pg.552]

Experimental tests of this mechanism can determine the reaction order with respect to each component and verify the molecularities assumed, but are unable to separate even the factors k K, let alone measure / and as long as the assumption of pre-equihbrium remains vaUd. Better time resolution in the experiment captures the approach of [i] toward equihbrium and, consequently, violates that assumption. [Pg.514]

If one of the reactants is the solvent, this reactant is present in large excess, so its kinetic participation will not be observed. Thus a bimolecular hydrolysis reaction commonly follows first-order kinetics. This example shows that the reaction order may not be equal to the reaction molecularity. [Pg.24]

From this expression, it is obvious that the rate is proportional to the concentration of A, and k is the proportionality constant, or rate constant, k has the units of (time) usually sec is a function of [A] to the first power, or, in the terminology of kinetics, v is first-order with respect to A. For an elementary reaction, the order for any reactant is given by its exponent in the rate equation. The number of molecules that must simultaneously interact is defined as the molecularity of the reaction. Thus, the simple elementary reaction of A P is a first-order reaction. Figure 14.4 portrays the course of a first-order reaction as a function of time. The rate of decay of a radioactive isotope, like or is a first-order reaction, as is an intramolecular rearrangement, such as A P. Both are unimolecular reactions (the molecularity equals 1). [Pg.432]

According to the definition given, this is a second-order reaction. Clearly, however, it is not bimolecular, illustrating that there is distinction between the order of a reaction and its molecularity. The former refers to exponents in the rate equation the latter, to the number of solute species in an elementary reaction. The order of a reaction is determined by kinetic experiments, which will be detailed in the chapters that follow. The term molecularity refers to a chemical reaction step, and it does not follow simply and unambiguously from the reaction order. In fact, the methods by which the mechanism (one feature of which is the molecularity of the participating reaction steps) is determined will be presented in Chapter 6 these steps are not always either simple or unambiguous. It is not very useful to try to define a molecularity for reaction (1-13), although the molecularity of the several individual steps of which it is comprised can be defined. [Pg.6]

We return here to the issues of molecularity and reaction order, mentioned previously, because they deserve further consideration now that the basic terminology has been introduced. The need for careful usage can best be demonstrated by way of some examples. [Pg.12]

These results have been fit to experimental data obtained for the reaction between a diisocyanate and a trifunctional polyester polyol, catalyzed by dibutyltindilaurate, in our laboratory RIM machine (Figure 2). No phase separation occurs during this reaction. Reaction order, n, activation energy, Ea, and the preexponential factor. A, were taken as adjustable parameters to fit adiabatic temperature rise data. Typical comparison between the experimental and numerical results are shown in Figure 7. The fit is quite satisfactory and gives reasonable values for the fit parameters. Figure 8 shows how fractional conversion of diisocyanate is predicted to vary as a function of time at the centerline and at the mold wall (remember that molecular diffusion has been assumed to be negligible). [Pg.157]

Stable and radioactive tracers have been used extensively in catalysis to validate reaction networks, test for intermediates, confirm reaction orders, distinguish between intra- and inter-molecular mechanisms, establish rate limiting steps, docviment direct participation of surface atoms in fluid-solid reactions, etc. A unique feature of tracer studies is that Individual reaction steps can be followed in a complicated set of reactions without perturbing the chemical composition of the... [Pg.88]

Such bimetallic alloys display higher tolerance to the presence of methanol, as shown in Fig. 11.12, where Pt-Cr/C is compared with Pt/C. However, an increase in alcohol concentration leads to a decrease in the tolerance of the catalyst [Koffi et al., 2005 Coutanceau et ah, 2006]. Low power densities are currently obtained in DMFCs working at low temperature [Hogarth and Ralph, 2002] because it is difficult to activate the oxidation reaction of the alcohol and the reduction reaction of molecular oxygen at room temperature. To counterbalance the loss of performance of the cell due to low reaction rates, the membrane thickness can be reduced in order to increase its conductance [Shen et al., 2004]. As a result, methanol crossover is strongly increased. This could be detrimental to the fuel cell s electrical performance, as methanol acts as a poison for conventional Pt-based catalysts present in fuel cell cathodes, especially in the case of mini or micro fuel cell applications, where high methanol concentrations are required (5-10 M). [Pg.361]

Class II second-order rate expressions are one of the most common forms one encounters in the laboratory. They include the gas phase reaction of molecular hydrogen and iodine (H2 + I2 -> 2HI), the reactions of free radicals with molecules (e.g., H -f Br2 -> HBr -f Br), and the hydrolysis of organic esters in nonaqueous media. [Pg.30]

Scheme B. Oxidation occurs as a chain reaction in scheme A. However, hydroperoxide formed is decomposed not by the reaction with free radicals but by a first-order molecular reaction with the rate constant km [3,56]. This scheme is valid for the oxidation of hydrocarbons where tertiary C—H bonds are attacked. For km 3> k i[RH] the maximum [ROOH] is attained at the hydroperoxide concentration when the rate of the formation of ROOH becomes equal to the rate of ROOH decay fl[RH](kj [ROOH][RH])l/2 km[ROOH] therefore, [ROOH]max = a2kn km 2 [RH]3. The kinetics of ROOH formation and RH consumption are described by the following equations [3],... Scheme B. Oxidation occurs as a chain reaction in scheme A. However, hydroperoxide formed is decomposed not by the reaction with free radicals but by a first-order molecular reaction with the rate constant km [3,56]. This scheme is valid for the oxidation of hydrocarbons where tertiary C—H bonds are attacked. For km 3> k i[RH] the maximum [ROOH] is attained at the hydroperoxide concentration when the rate of the formation of ROOH becomes equal to the rate of ROOH decay fl[RH](kj [ROOH][RH])l/2 km[ROOH] therefore, [ROOH]max = a2kn km 2 [RH]3. The kinetics of ROOH formation and RH consumption are described by the following equations [3],...
In 1939, Schulz [92-94] first reported that 12 (X=CN in 21) served as an initiator for the radical polymerization of MM A and St. Thereafter, Hey and Misra [95] also reported the polymerization of St with 12 or its p-methoxy substituted derivatives. Borsig et al. [96,97] reported in 1967 the polymerization of MMA and St with 3,3,4,4-tetraphenylcyclohexane (21b) and 1,1,2,2-tetraphenylcyclopentane (21c) and that the reaction orders of the polymerization rates with respect to the concentrations of 21b and 21c were 0.25 and 0.20, respectively, and concluded that the primary radical termination predominantly occurred. It was noted that in these polymerizations the average molecular weight of the polymer increased as a function of the polymerization time, although the clear reason was not described in these papers. It was also reported by the same authors that the resulting polymer could further induce block copolymerization [98]. [Pg.88]

For the cobalt-based system the molecularity of the transition state indicated by the reaction order is H3C0C4O4 and the reactants are H2 and HCoCCO). Thus, two hydrogen atoms start with values of v 3200 cm 1 and one with v 1830 cm"1. If in the transition state the strong H-H bond is not yet completely broken, then we should expect to find the H atom originally attached to cobalt bound to carbon or oxygen (v 2900-3400 cm"1) in the transition state. [Pg.32]

Molecularity of a reaction the number of reacting partners in an elementary reaction uni-molecular (one), bimolecular (two), or termolecular (three) in the mechanism above, the first and third steps are unimolecular as written, and the remainder are bimolecular. Molecularity (a mechanistic concept) is to be distinguished from order (algebraic). [Pg.116]

Both theories yield laws for elementary reactions in which order, molecularity, and stoichiometry are the same (Section 6.1.2). [Pg.145]

The elementary steps in gas-phase reactions have rate laws in which reaction order for each species is the same as the corresponding molecularity. The rate constants for these elementary reactions can be understood quantitatively on the basis of simple theories. For our purpose, reactions involving photons and charged particles can be understood in the same way. [Pg.152]

We must appreciate the essential truth that the molecularity of a reaction and the stoichiometric equation are two separate things, and do not necessarily coincide. Luckily, we find that reactions are quite often simple (or elementary ), by which we mean that they involve a single reaction step. The molecularity and the reaction order are the same if the reaction... [Pg.363]

In chemical equilibria, the energy relations between the reactants and the products are governed by thermodynamics without concerning the intermediate states or time. In chemical kinetics, the time variable is introduced and rate of change of concentration of reactants or products with respect to time is followed. The chemical kinetics is thus, concerned with the quantitative determination of rate of chemical reactions and of the factors upon which the rates depend. With the knowledge of effect of various factors, such as concentration, pressure, temperature, medium, effect of catalyst etc., on reaction rate, one can consider an interpretation of the empirical laws in terms of reaction mechanism. Let us first define the terms such as rate, rate constant, order, molecularity etc. before going into detail. [Pg.1]

It would be an advantage to have a detailed understanding of the glass transition in order to get an idea of the structural and dynamic features that are important for photophysical deactivation pathways or solid-state photochemical reactions in molecular glasses. Unfortunately, the formation of a glass is one of the least understood problems in solid-state science. At least three different theories have been developed for a description of the glass transition that we can sketch only briefly in this context the free volume theory, a thermodynamic approach, and the mode coupling theory. [Pg.100]

Since, for an elementary step, reaction order and molecularity coincide, one can write ... [Pg.22]

In first-order reactions, the rate expression depends upon the concentration of only one species, whereas second-order reactions show dependence upon two species, which may be the same or different. The molecularity, or number of reactant molecules involved in the rate-determining step, is usually equivalent to the kinetic reaction order, though there can be exceptions. For instance, a bimolecular reaction can appear to be first order if there is no apparent dependence on the concentration of one of the... [Pg.173]

Rate expression Reaction order Probable reaction Molecularity... [Pg.173]

Bimolecular reactions are elementary reactions involving two distinct entities that combine to form an activated complex. For reactions in solution, the solvent contributes to the reaction s molecularity only when it is a reactant of the system. Bimolecular reactions are usually second order, but it is important to stress that some second order reactions need not be bimolecular. [Pg.80]

Bimolecular processes are very common in biological systems. The binding of a hormone to a receptor is a bimolecular reaction, as is substrate and inhibitor binding to an enzyme. The term bimolecular mechanism applies to those reactions having a rate-limiting step that is bimolecular. See Chemical Kinetics Molecularity Reaction Order Elementary Reaction Transition-State Theory... [Pg.81]

Again, the molecularity of a reaction is always an integer and only applies to elementary reactions. Such is not always the case for the order of a reaction. The distinction between molecularity and order can also be stated as follows molecularity is the theoretical description of an elementary process reaction order refers to the entire empirically derived rate expression (which is a set of elementary reactions) for the complete reaction. Usually a bimolecular reaction is second order however, the converse need not always be true. Thus, unimolecular, bimolecular, and termolecular reactions refer to elementary reactions involving one, two, or three entities that combine to form an activated complex. [Pg.132]

One would conclude that / must approximately equal 28 for this process Hofrichter et al found a similar behavior in nucleation of human hemoglobin S (HbS) the apparent reaction order for the nucleation of HbS aggregation was about 32 (See Hemoglogin S Polymerization). Of course, such analyses are not fully justifiable, because one cannot assume ideality in the solution properties at high protein concentrations (See Molecular Crowding). [Pg.470]

The molecularity of a reaction is always an integer and only applies to elementary reactions. That is not always so for the order of a reaction, thus emphasizing the difference between molecularity and order. Molecularity... [Pg.484]

With chemical reactions, the exponents in a rate expression are usually integers. However, the exponents can be fractions or even negative depending on the complexity of the reaction. Reaction order should not be confused with molecularity. Order is an empirical concept whereas molecularity refers to the actual molecular process. However, for elementary reactions, the reaction order equals the molecularity. See Chemical Kinetics Molecularity First-Order Reactions Rate Constants... [Pg.529]

Reactions in which the velocity (v) of the process is independent of the reactant concentration, following the rate law v = k. Thus, the rate constant k has units of M sAn example of a zero-order reaction is a Michaelis-Menten enzyme-catalyzed reaction in which the substrate concentration is much larger than the Michaelis constant. Under these conditions, if the substrate concentration is raised even further, no change in the velocity will be observed (since v = Umax)- Thus, the reaction is zero-order with respect to the substrate. However, the reaction is still first-order with respect to total enzyme concentration. When the substrate concentration is not saturating then the reaction ceases to be zero order with respect to substrate. Reactions that are zero-order in each reactant are exceedingly rare. Thus, zero-order reactions address a fundamental difference between order and molecularity. Reaction order is an empirical relationship. Hence, the term pseudo-zero order is actually redundant. All zero-order reactions cease being so when no single reactant is in excess concentration with respect to other reactants in the system. [Pg.713]

CHEMICAL KINETICS MOLECULARITY REACTION ORDER ELEMENTARY REACTION... [Pg.726]


See other pages where Reaction order molecularity is mentioned: [Pg.167]    [Pg.210]    [Pg.115]    [Pg.79]    [Pg.88]    [Pg.41]    [Pg.479]    [Pg.13]    [Pg.29]    [Pg.377]    [Pg.117]    [Pg.77]    [Pg.409]    [Pg.471]    [Pg.177]    [Pg.51]    [Pg.524]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Molecular orbitals second-order reactions

Molecular orbitals zero-order reactions

Molecular order

Molecular ordered

Molecularity reaction order and

Order of reaction molecularity and

Rate orders and Molecularity of a reaction

Reaction molecular

© 2024 chempedia.info