Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms temperature dependence

An example of these pressure studies is provided by the studies of Elsevier et al. [31], who investigated the dependence of the hydrogenation rate of 4-octyne by a Pd-catalyst on the dihydrogen pressure, which was varied between 0 and 40 bar. The hydrogenation rate was shown to depend linearly on the dihydrogen pressure. In order to elucidate the reaction mechanism, the dependence of the reaction rate on substrate and catalyst concentration, and on the temperature, was also measured. NMR experiments with deuterium gas as well as PHIP-ex-periments were also carried out. [Pg.308]

In specifying rate constants in a reaction mechanism, it is common to give the forward rate constants parameterized as in Eq. 9.83 for every reaction, and temperature-dependent fits to the thermochemical properties of each species in the mechanism. Reverse rate constants are not given explicitly but are calculated from the equilibrium constant, as outlined above. This approach has at least two advantages. First, if the forward and reverse rate constants for reaction i were both explicitly specified, their ratio (via the expressions above) would implicitly imply the net thermochemistry of the reaction. Care would need to be taken to ensure that the net thermochemistry implied by all reactions in a complicated mechanism were internally self-consistent, which is necessary but by no means ensured. Second, for large reaction sets it is more concise to specify the rate coefficients for only the forward reactions and the temperature-dependent thermodynamic properties of each species, rather than listing rate coefficients for both the forward and reverse reactions. Nonetheless, both approaches to describing the reverse-reaction kinetics are used by practitioners. [Pg.387]

For each reaction in a surface chemistry mechanism, one must provide a temperature dependent reaction probability or a rate constant for the reaction in both the forward and reverse directions. (The user may specify that a reaction is irreversible or has no temperature dependence, which are special cases of the general statement above.) To simulate the heat consumption or release at a surface due to heterogeneous reactions, the (temperature-dependent) endothermicity or exothermicity of each reaction must also be provided. In developing a surface reaction mechanism, one may choose to specify independently the forward and reverse rate constants for each reaction. An alternative would be to specify the change in free energy (as a function of temperature) for each reaction, and compute the reverse rate constant via the reaction equilibrium constant. [Pg.476]

Taylor et al. [104] investigated the reaction of hydroxyl radicals with acetaldehyde in a wide temperature range using a quantum RRK model to describe the competition between addition and abstraction. They conclude that different reaction mechanisms occur, depending on the temperature, and that OH addition followed by CH3 elimination is the dominant reaction pathway between 295 and 600 K. Moreover, they claimed that the H-atom elimination pathway is largely insignificant, except possibly at the lowest temperatures. [Pg.257]

The first investigation on the stereoselectivity of the stepwise thermal denitrogena-tion of the diethoxy-substituted azoalkane has been reported. The double inversion product was the major isomer of the ring closure product. In photochemical denitro-genation, the inverted azoalkane was also the major isomer at 70 °C, although the stereoselectivity of the reaction was temperature dependent. An inversion process was proposed as the mechanism that determines the stereochemistry of the denitrogenation reaction products. The inversion product may alternatively be formed as a result of dynamic effects. [Pg.369]

It is generally thought that as temperature increases so do reaction kinetics. However, the situation in a fuel cell, an electrochemical device, is far more compU-cated. The reaction mechanism will depend on the surface environment of the catalyst particle and the potential at which the reactimi is taking place. The electrode overpotential associated with the ORR represents the largest voltage loss in fully humidified fuel cells and so it is important that the situation not be exacerbated in running fuel cell under hot and dry conditions. In the kinetically controlled region of the fuel cell operation, the performance can be described by the Tafel equation ... [Pg.596]

The balance of these two effects was found to depend delicately on the stoichiometry, pressure, and temperature. The results were used to develop a more comprehensive C0/H20/02/N0 reaction mechanism, incorporating the explicit fall-off behaviour of recombination reactions [46, 47],... [Pg.2118]

The pH dependency of enzyme-catalyzed reactions also exhibits an optimum. The pH optima for enzyme-catalyzed reactions cover a wide range of pH values. Eor instance, the subtihsins have a broad pH optima in the alkaline range. Other enzymes have a narrow pH optimum. The nature of the pH profile often gives clues to the elucidation of the reaction mechanism of the enzyme-catalyzed reaction. The temperature at which an experiment is performed may affect the pH profile and vice versa. [Pg.288]

In other cases, it may be impossible to describe the kinetics properly using a single reaction path. A variety of pathways may contribute to the reaction kinetics. One or more paths may be dominant at low temperature, whereas other paths may be dominant at high temperatures. This results in a temperature-dependent reaction mechanism. In such situa-... [Pg.209]

Students of professor R. G. Anthony at College Station, TX used a mechanism identical (by chance) to that in UCKRON for derivation of the kinetics. Yet they assumed a model in which the surface reaction controls, and had two temperature dependent terms in the denominator as 13,723 and 18,3 16 cal/mol. Multiplying both the numerator and the denominator with exp(-15,000) would come close to the Ea,/R about 15,000 cal/mol, with a negative sign, and a denominator similar to that in the previously discussed models. [Pg.139]

The route from kinetic data to reaction mechanism entails several steps. The first step is to convert the concentration-time measurements to a differential rate equation that gives the rate as a function of one or more concentrations. Chapters 2 through 4 have dealt with this aspect of the problem. Once the concentration dependences are defined, one interprets the rate law to reveal the family of reactions that constitute the reaction scheme. This is the subject of this chapter. Finally, one seeks a chemical interpretation of the steps in the scheme, to understand each contributing step in as much detail as possible. The effects of the solvent and other constituents (Chapter 9) the effects of substituents, isotopic substitution, and others (Chapter 10) and the effects of pressure and temperature (Chapter 7) all aid in the resolution. [Pg.125]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

Reaction of iron atoms with cycloheptatriene to form [Fe( r) -C7H7)-(t7 -C7H9)] was confirmed by another group 15) these workers determined the crystal structure of the species, demonstrating a sandwich structure with the open faces of the two 7j -systems skewed to each other. The temperature-dependent NMR spectrum of this species (16) indicated two types of fiuxional behavior in solution. Evidence for a 1,-2-shift mechanism of the l-5-i7-cycloheptatrienyl moiety in the structure shown. [Pg.156]

Solution The analysis could be carried out using mole fractions as the composition variable, but this would restrict applicability to the specific conditions of the experiment. Greater generality is possible by converting to concentration units. The results will then apply to somewhat different pressures. The somewhat recognizes the fact that the reaction mechanism and even the equation of state may change at extreme pressures. The results will not apply at different temperatures since k and kc will be functions of temperature. The temperature dependence of rate constants is considered in Chapter 5. [Pg.129]


See other pages where Reaction mechanisms temperature dependence is mentioned: [Pg.52]    [Pg.259]    [Pg.316]    [Pg.88]    [Pg.247]    [Pg.168]    [Pg.226]    [Pg.82]    [Pg.301]    [Pg.126]    [Pg.73]    [Pg.2340]    [Pg.221]    [Pg.284]    [Pg.741]    [Pg.2114]    [Pg.2115]    [Pg.2827]    [Pg.348]    [Pg.411]    [Pg.459]    [Pg.537]    [Pg.521]    [Pg.213]    [Pg.222]    [Pg.1045]    [Pg.211]    [Pg.173]    [Pg.186]    [Pg.64]    [Pg.34]    [Pg.607]    [Pg.171]    [Pg.154]    [Pg.45]    [Pg.153]   
See also in sourсe #XX -- [ Pg.553 ]




SEARCH



Dependence mechanism

Mechanics Dependency

Mechanism temperature-dependent

Reaction dependence

Reaction temperature dependence

Reaction temperature dependency

Temperature Dependence and Photochemical Reaction Mechanisms

Temperature dependence, mechanical

© 2024 chempedia.info