Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms electronic structure calculations

In particularly thorough examples of the traditional physical organic approach, Parker (1969) and Abraham (1974) interpreted solvent effects on Walden inversion reactions by using thermodynamic transfer functions. However, in order to explain the reaction rate decrease upon solvation from a microscopic point of view, quantum mechanical electronic structure calculations must be carried out. Micro-solvated Sn-2 reactions were initially studied in this way, with the CNDO/2 semiempirical molecular orbital (MO) method, by using the supermolecule... [Pg.23]

Attempts to correlate reaction mechanisms, electron density calculations and experimental results have met with only limited success. As mentioned in the previous chapter (Section 4.06.2), the predicted orders of electrophilic substitution for imidazole (C-5 > -2 > -4) and benzimidazole (C-7>-6>-5>-4 -2) do not take into account the tautomeric equivalence of the 4- and 5-positions of imidazole and the 4- and 7-, 5- and 6-positions of benzimidazole. When this is taken into account the predictions are in accord with the observed orientations of attack in imidazole. Much the same predictions can be made by considering the imidazole molecule to be a combination of pyrrole and pyridine (74) — the most likely site for electrophilic attack is C-5. Furthermore, while sets of resonance structures for the imidazole and benzimidazole neutral molecules (Schemes 1 and 2, Section 4.06.2) suggest that all ring carbons have some susceptibility to electrophilic attack, consideration of the stabilities of the expected tr-intermediates (Scheme 29) supports the commonly observed preference for 5- (or 4-) substitution. In benzimidazole attack usually occurs first at C-5 and a second substituent enters at C-6 unless other substituent effects intervene. [Pg.394]

Theoretical studies of the properties of the individual components of nanocat-alytic systems (including metal nanoclusters, finite or extended supporting substrates, and molecular reactants and products), and of their assemblies (that is, a metal cluster anchored to the surface of a solid support material with molecular reactants adsorbed on either the cluster, the support surface, or both), employ an arsenal of diverse theoretical methodologies and techniques for a recent perspective article about computations in materials science and condensed matter studies [254], These theoretical tools include quantum mechanical electronic structure calculations coupled with structural optimizations (that is, determination of equilibrium, ground state nuclear configurations), searches for reaction pathways and microscopic reaction mechanisms, ab initio investigations of the dynamics of adsorption and reactive processes, statistical mechanical techniques (quantum, semiclassical, and classical) for determination of reaction rates, and evaluation of probabilities for reactive encounters between adsorbed reactants using kinetic equation for multiparticle adsorption, surface diffusion, and collisions between mobile adsorbed species, as well as explorations of spatiotemporal distributions of reactants and products. [Pg.71]

B. O. Roos, M.P. Fulscher, P.-A. Malmqvist, M. Merchan and L. Serrano-Andres, Theoretical studies of electronic spectra of organic molecules, in S.R. Langhoff (Ed.), Quantum mechanical electronic structure calculations with chemical accuracy. Understanding Chemical Reactions, Kluwer, Dordrecht, 1995, pp. 357-438. [Pg.762]

The reaction rate constant for each elementary reaction in the mechanism must be specified, usually in Arrhenius form. Experimental rate constants are available for many of the elementary reactions, and clearly these are the most desirable. However, often such experimental rate constants will be lacking for the majority of the reactions. Standard techniques have been developed for estimating these rate constants.A fundamental input for these estimation techniques is information on the thermochemistry and geometry of reactant, product, and transition-state species. Such thermochemical information is often obtainable from electronic structure calculations, such as those discussed above. [Pg.346]

Recently, Moskaleva et al. have proposed a new mechanism based on electronic structure calculations." Earlier experimental studies by Kasdan et al. determined that methyne (HC) has a doublet ground state and with a doublet-quartet energy splitting (AEdq) of 71.5 + O.SkJ/mol." Moskaleva et al. noted that the initially proposed mechanism (for HCN and N(" S) atom formation) is therefore spin-forbidden, and they also proposed a more favorable and spin-allowed reaction on the doublet surface. This new route on the doublet energy surface proceeds through the formation of an NCN intermediate, with concomitant formation of (doublet) hydrogen atom. [Pg.261]

The effect of solvent environment on the chemical reactivity is well known. However, it is a challenging problem for theoretical chemists to predict the effect of the solvent on the chemical reactivity. With the confidence gained in understanding the chemical reaction mechanism in vacuum using various electronic structure calculation methods, several attempts have been made to probe the reactivity in solvent medium. The success of solvation models in predicting the SN2 reactions in solvent environments is illustrated [8-11,38]. [Pg.388]

Third, with recent advances made in theoretical and computational quantum mechanics, it is possible to estimate thermochemical information via electronic structure calculations (Dewar, 1975 Dunning et al., 1988). Such a capability, together with the transition state theory (TST) (Eyring, 1935), also allows the determination of the rate parameters of elementary reactions from first principles. Our ability to estimate activation energy barriers is... [Pg.97]

In addition to experiments, a range of theoretical techniques are available to calculate thermochemical information and reaction rates for homogeneous gas-phase reactions. These techniques include ab initio electronic structure calculations and semi-empirical approximations, transition state theory, RRKM theory, quantum mechanical reactive scattering, and the classical trajectory approach. Although still computationally intensive, such techniques have proved themselves useful in calculating gas-phase reaction energies, pathways, and rates. Some of the same approaches have been applied to surface kinetics and thermochemistry but with necessarily much less rigor. [Pg.476]

The reaction of iV-(2,4-dinitrophenyl)amino acids with base in aqueous dioxane has been shown to give benzimidazole iV-oxides (7). The rate-determining step is likely to be formation of an iV-alkylidene-2-nitrosoaniline intermediate (6), which is followed by rapid cyclization and decarboxylation.19 The loss of carbon dioxide from perbenzoate anions has been investigated by mass spectrometry and electronic structure calculations. The results, including isotopic labelling experiments, support a mechanism involving initial intramolecular nucleophilic attack at either the ortho- or ipso-ring positions. They also indicate that epoxides may be intermediates en route to the phenoxide products.20 There has also been a theoretical study of the formation of trichlorinated dibenzo-/ -dioxins by reaction of 2,4,5-trichlorophenolate ions with 2,4-dichlorophenol.21... [Pg.179]

Quantum chemical methods aim to treat the fundamental quantum mechanics of electronic structure, and so can be used to model chemical reactions. Such quantum chemical methods are more flexible and more generally applicable than molecular mechanics methods, and so are often preferable and can be easier to apply. The major problem with electronic structure calculations on enzymes is presented by the very large computational resources required, which significantly limits the size of the system that can be treated. To overcome this problem, small models of enzyme active sites can be studied in isolation (and perhaps with an approximate model of solvation). Alternatively, a quantum chemical treatment of the enzyme active site can be combined with a molecular mechanics description of the protein and solvent environment the QM/MM approach. Both will be described below. [Pg.280]

Theoretical chemistry involves explaining chemical phenomenon using natural laws. The primary tool of theoretical chemistry is quantum chemistry, and the field may be divided into electronic structure calculations, reaction dynamics and statistical mechanics. These three play a role in addressing an issue of primary concern understanding photochemical reaction rates at the various conditions found in the atmosphere. Atmospheric science includes both atmospheric chemistry and atmospheric physics, meteorology, climatology and the study of extraterrestrial atmospheres. [Pg.4]

Two broad classes of technique are available for modeling matter at the atomic level. The first avoids the explicit solution of the Schrodinger equation by using interatomic potentials (IP), which express the energy of the system as a function of nuclear coordinates. Such methods are fast and effective within their domain of applicability and good interatomic potential functions are available for many materials. They are, however, limited as they cannot describe any properties and processes, which depend explicitly on the electronic structme of the material. In contrast, electronic structure calculations solve the Schrodinger equation at some level of approximation allowing direct simulation of, for example, spectroscopic properties and reaction mechanisms. We now present an introduction to interatomic potential-based methods (often referred to as atomistic simulations). [Pg.4529]

First principles approaches are important as they avoid many of the pitfalls associated with using parameterized descriptions of the interatomic interactions. Additionally, simulation of chemical reactivity, reactions and reaction kinetics really requires electronic structure calculations [108]. However, such calculations were traditionally limited in applicability to rather simplistic models. Developments in density functional theory are now broadening the scope of what is viable. Car-Parrinello first principles molecular dynamics are now being applied to real zeolite models [109,110], and the combined use of classical and quantum mechanical methods allows quantum chemical methods to be applied to cluster models embedded in a simpler description of the zeoUte cluster environment [105,111]. [Pg.255]

The next section gives a brief overview of the main computational techniques currently applied to catalytic problems. These techniques include ab initio electronic structure calculations, (ab initio) molecular dynamics, and Monte Carlo methods. The next three sections are devoted to particular applications of these techniques to catalytic and electrocatalytic issues. We focus on the interaction of CO and hydrogen with metal and alloy surfaces, both from quantum-chemical and statistical-mechanical points of view, as these processes play an important role in fuel-cell catalysis. We also demonstrate the role of the solvent in electrocatalytic bondbreaking reactions, using molecular dynamics simulations as well as extensive electronic structure and ab initio molecular dynamics calculations. Monte Carlo simulations illustrate the importance of lateral interactions, mixing, and surface diffusion in obtaining a correct kinetic description of catalytic processes. Finally, we summarize the main conclusions and give an outlook of the role of computational chemistry in catalysis and electrocatalysis. [Pg.28]


See other pages where Reaction mechanisms electronic structure calculations is mentioned: [Pg.81]    [Pg.491]    [Pg.214]    [Pg.126]    [Pg.177]    [Pg.336]    [Pg.937]    [Pg.945]    [Pg.950]    [Pg.373]    [Pg.185]    [Pg.837]    [Pg.23]    [Pg.52]    [Pg.283]    [Pg.284]    [Pg.355]    [Pg.216]    [Pg.169]    [Pg.441]    [Pg.2727]    [Pg.154]    [Pg.252]    [Pg.22]    [Pg.288]    [Pg.199]    [Pg.310]    [Pg.31]    [Pg.336]    [Pg.81]    [Pg.216]    [Pg.71]    [Pg.313]    [Pg.6]   


SEARCH



4.14. Calculated electronic structure

Calculations reactions

Electron mechanisms

Electronic calculation

Electronic reaction mechanism

Electronic structure calculations

Mechanical calculator

Mechanical structure

Reaction mechanisms calculations

Structural mechanic

Structural mechanism

Structure calculations

© 2024 chempedia.info