Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms calculation

Figure 8. The Sm(III)-catalyzed olefin hydroboration reaction mechanism calculated by Koga and Kulkami. Figure 8. The Sm(III)-catalyzed olefin hydroboration reaction mechanism calculated by Koga and Kulkami.
Figure 7.9 Main reaction pathways of the ionic reaction mechanism, calculated for 45MPa, 350°C and 118s. Figure 7.9 Main reaction pathways of the ionic reaction mechanism, calculated for 45MPa, 350°C and 118s.
From the point of view of the reaction mechanism, calculations agree with the experimental result that the CC bond in propane is easier to break than the CH bonds. However, it was also shown that methyl radicals produced this way can abstract hydrogens from other propane molecules forming the /i-propyl and /-propyl radicals. Although no attempt was performed in this paper to solve the full kinetic problem, a reduced mechanism is suggested, which proceeds through the formation of propene and ends up giving methane and butane, as observed experimentally. [Pg.82]

Tannor D J, Kosloff R and Rice S A 1986 Coherent pulse sequence induced control of selectivity of reactions exact quantum mechanical calculations J. Chem. Rhys. 85 5805-20, equations (1)-(6)... [Pg.279]

Manthe U, Seideman T and Miller WH 1993 Full-dimensional quantum-mechanical calculation of the rate-constant for the H2 + OH H2O + H reaction J. Chem. Phys. 99 10 078-81... [Pg.1004]

In Figure 1, we see that there are relative shifts of the peak of the rotational distribution toward the left from f = 12 to / = 8 in the presence of the geometiic phase. Thus, for the D + Ha (v = 1, DH (v, f) - - H reaction with the same total energy 1.8 eV, we find qualitatively the same effect as found quantum mechanically. Kuppermann and Wu [46] showed that the peak of the rotational state distribution moves toward the left in the presence of a geometric phase for the process D + H2 (v = 1, J = 1) DH (v = 1,/)- -H. It is important to note the effect of the position of the conical intersection (0o) on the rotational distribution for the D + H2 reaction. Although the absolute position of the peak (from / = 10 to / = 8) obtained from the quantum mechanical calculation is different from our results, it is worthwhile to see that the peak... [Pg.57]

Clearly then, the understanding of chemical reactions under such a variety of conditions is still in its infancy and the prediction of the course and products of a chemical reaction poses large problems. The ab initio quantum mechanical calculation of the pathway and outcome of a single chemical reaction can only be... [Pg.169]

This is a question of reaction prediction. In fact, this is a deterministic system. If we knew the rules of chemistry completely, and understood chemical reactivity fully, we should be able to answer this question and to predict the outcome of a reaction. Thus, we might use quantum mechanical calculations for exploring the structure and energetics of various transition states in order to find out which reaction pathway is followed. This requires calculations of quite a high degree of sophistication. In addition, modeling the influence of solvents on... [Pg.542]

With better hardware and software, more exact methods can be used for the representation of chemical structures and reactions. More and more quantum mechanical calculations can be utilized for chemoinformatics tasks. The representation of chemical structures will have to correspond more and more to our insight into theoretical chemistry, chemical bonding, and energetics. On the other hand, chemoinformatics methods should be used in theoretical chemistry. Why do we not yet have databases storing the results of quantum mechanical calculations. We are certain that the analysis of the results of quantum mechanical calculations by chemoinformatics methods could vastly increase our chemical insight and knowledge. [Pg.624]

The classical introduction to molecular mechanics calculations. The authors describe common components of force fields, parameterization methods, and molecular mechanics computational methods. Discusses th e application of molecular mechanics to molecules comm on in organic,and biochemistry. Several chapters deal w ith thermodynamic and chemical reaction calculations. [Pg.2]

An ensemble of trajectory calculations is rigorously the most correct description of how a reaction proceeds. However, the MEP is a much more understandable and useful description of the reaction mechanism. These calculations are expected to continue to be an important description of reaction mechanism in spite of the technical difficulties involved. [Pg.162]

For reactions between atoms, the computation needs to model only the translational energy of impact. For molecular reactions, there are internal energies to be included in the calculation. These internal energies are vibrational and rotational motions, which have quantized energy levels. Even with these corrections included, rate constant calculations tend to lose accuracy as the complexity of the molecular system and reaction mechanism increases. [Pg.167]

The level of theory necessary for computing PES s depends on how those results are to be used. Molecular mechanics calculations are often used for examining possible conformers of a molecule. Semiempiricial calculations can give a qualitative picture of a reaction surface. Ah initio methods must often be used for quantitatively correct reaction surfaces. Note that size consistent methods must be used for the most accurate results. The specific recommendations given in Chapter 18 are equally applicable to PES calculations. [Pg.175]

The Poisson equation has been used for both molecular mechanics and quantum mechanical descriptions of solvation. It can be solved directly using numerical differential equation methods, such as the finite element or finite difference methods, but these calculations can be CPU-intensive. A more efficient quantum mechanical formulation is referred to as a self-consistent reaction field calculation (SCRF) as described below. [Pg.209]

This is an introduction to the techniques used for the calculation of electronic excited states of molecules (sometimes called eximers). Specifically, these are methods for obtaining wave functions for the excited states of a molecule from which energies and other molecular properties can be calculated. These calculations are an important tool for the analysis of spectroscopy, reaction mechanisms, and other excited-state phenomena. [Pg.216]

Molecular mechanics methods have been used particularly for simulating surface-liquid interactions. Molecular mechanics calculations are called effective potential function calculations in the solid-state literature. Monte Carlo methods are useful for determining what orientation the solvent will take near a surface. Molecular dynamics can be used to model surface reactions and adsorption if the force held is parameterized correctly. [Pg.319]

Example You could explore the possible geometries of two molecules interacting in solution and guess at initial transition structures. For example, if molecule Aundergoes nucleophilic attack on molecule B, you could impose a distance restraint between the two atoms that would form a bond, allowing the rest of the system to relax. Simulations such as these can help to explain stereochemistry or reaction kinetics and can serve as starting points for quantum mechanics calculations and optimizations. [Pg.83]

A common application of the direct calculation of molecular energy is the study of organic reaction mechanisms. You can investigate the energies of different potential intermediates, species not easily studied by experiment. A review by Thiel lists many such 39. Thiel, W. Semiempirical Methods Current Status and Perspectives Tetrahedron, 44 7393, 1988. [Pg.131]

The total concentration or amount of chlorine-based oxidants is often expressed as available chorine or less frequendy as active chlorine. Available chlorine is the equivalent concentration or amount of Cl needed to make the oxidant according to equations 1—4. Active chlorine is the equivalent concentration or amount of Cl atoms that can accept two electrons. This is a convention, not a description of the reaction mechanism of the oxidant. Because Cl only accepts two electrons as does HOCl and monochloramines, it only has one active Cl atom according to the definition. Thus the active chlorine is always one-half of the available chlorine. The available chlorine is usually measured by iodomettic titration (7,8). The weight of available chlorine can also be calculated by equation 5. [Pg.142]

A final important area is the calculation of free energies with quantum mechanical models [72] or hybrid quanmm mechanics/molecular mechanics models (QM/MM) [9]. Such models are being used to simulate enzymatic reactions and calculate activation free energies, providing unique insights into the catalytic efficiency of enzymes. They are reviewed elsewhere in this volume (see Chapter 11). [Pg.196]

The most extensive quantum mechanical calculations have been done on this reaction ... [Pg.194]

The molecular mechanics calculations discussed so far have been concerned with predictions of the possible equilibrium geometries of molecules in vacuo and at OK. Because of the classical treatment, there is no zero-point energy (which is a pure quantum-mechanical effect), and so the molecules are completely at rest at 0 K. There are therefore two problems that I have carefully avoided. First of all, I have not treated dynamical processes. Neither have I mentioned the effect of temperature, and for that matter, how do molecules know the temperature Secondly, very few scientists are interested in isolated molecules in the gas phase. Chemical reactions usually take place in solution and so we should ask how to tackle the solvent. We will pick up these problems in future chapters. [Pg.57]

Qualitative models of reactivity and quantum mechanical calculations of reaction paths both indicate an angular approach of the attacking nucleophile to the first-row sp -hybridized electrophilic centers M at intermediate and reactive distances, 29. The geometry of 29 is also characteristic for the case of nucleophilic addition to electron-deficient centers of main-group 12 and 13 elements. By contrast, a linear arrangement 30 of making and breaking bonds is required for sp -hybridized first-row centers (C, N, O)... [Pg.191]

DET calculations on the hyperfine coupling constants of ethyl imidazole as a model for histidine support experimental results that the preferred histidine radical is formed by OH addition at the C5 position [00JPC(A)9144]. The reaction mechanism of compound I formation in heme peroxidases has been investigated at the B3-LYP level [99JA10178]. The reaction starts with a proton transfer from the peroxide to the distal histidine and a subsequent proton back donation from the histidine to the second oxygen of the peroxide (Scheme 8). [Pg.13]


See other pages where Reaction mechanisms calculation is mentioned: [Pg.140]    [Pg.33]    [Pg.140]    [Pg.33]    [Pg.2324]    [Pg.9]    [Pg.131]    [Pg.328]    [Pg.36]    [Pg.9]    [Pg.132]    [Pg.328]    [Pg.165]    [Pg.167]    [Pg.546]    [Pg.588]    [Pg.617]    [Pg.618]    [Pg.222]    [Pg.262]    [Pg.341]    [Pg.149]    [Pg.175]    [Pg.36]    [Pg.54]   
See also in sourсe #XX -- [ Pg.974 , Pg.975 , Pg.976 ]




SEARCH



Calculations reactions

Mechanical calculator

Quantum mechanical calculations aldol reactions

Reaction mechanisms density functional theory calculations

Reaction mechanisms electron correlation calculations

Reaction mechanisms electronic structure calculations

Reaction mechanisms perturbation theory calculations

Reaction mechanisms wave-function calculations

© 2024 chempedia.info