Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction homogeneous process

The scope of oxidation chemistry is enormous and embraces a wide range of reactions and processes. This article provides a brief introduction to the homogeneous free-radical oxidations of paraffinic and alkylaromatic hydrocarbons. Heterogeneous catalysis, biochemical and hiomimetic oxidations, oxidations of unsaturates, anodic oxidations, etc, even if used to illustrate specific points, are arbitrarily outside the purview of this article. There are, even so, many unifying features among these areas. [Pg.334]

In a more general sense, most of the concepts and techniques given in this book will be valid for homogeneous processes also, as long as there is a way to stop the reaction in the experimental studies suddenly by some means, e.g., by quenching or neutralizing. Some references will be given at the appropriate places in the book. [Pg.3]

Since the catalyst is concentrated and operates in the ionic phase, and also probably at the phase boundary, reaction volumes in the biphasic technology are much lower than in the conventional single-phase Dimersol process, in which the catalyst concentration in the reactor is low. As an example, the Difasol reactor volume can be up to 40 times lower than that classically used in the homogeneous process. [Pg.275]

What can drive the switch from existing homogeneous processes to novel ionic liquids technology One major point is probably a higher cost-effectiveness. This can result from improved reaction rates and selectivity, associated with more efficient catalyst recovery and better environmental compatibility. [Pg.277]

R35 can occur in the dark before illumination begins, which will accumulate the radical precursor and help to start the photochemistry when illumination commences. It can also occur continuously during the simulated reaction, maintaining a higher steady-state radical concentration than purely homogeneous processes. Another process of uncertain occurrence, cited in older work, is... [Pg.97]

The most common catalyst used to date is chloroplatinic acid (also known, after its discoverer, as Speier s catalyst) it is now clear that, contrary to earlier views (23), hydrosilylation is a homogeneous process (25, 208). A major problem is that of reproducibility, and efforts are being made to utilize soluble transition metal complexes. Information about such systems has been used in the interpretation of some related catalytic heterogeneous reactions (232). [Pg.298]

Experiments showed that high methyl ester yields can be achieved with solid bases and super acids under moderate reaction conditions. The solid bases were more effective catalysts than the solid super acids. High stability can be achieved by an ordinary inexpensive preparation process, and the catalyst can be separated easily from the reaction products in the heterogeneous catalysis process. The costly catalyst removal process can be avoided compared with the homogeneous process. Therefore, the heterogeneous process using a solid catalyst should be more economical for biodiesel production. [Pg.156]

The catalytic conversion of NO was investigated Grst in absence of catalyst (blank). The results reported in Fig. 1 show that the homogeneous gas phase oxidation of the alkane starts at 650 K. No reduction of NO is observed in the homogeneous process, then the production of N2 can be ascribed to the catalytic reduction. The catalytic properties were determined by temperature programmed reaction (ramp 2 K min-l). The temperature was increased from 523 to 673 K and back. [Pg.623]

In homogeneous process the components of the reaction mixture are mutually soluble including a homogeneous catalysts if used. Mixing of reactants is necessary if the process to be carried out either (1) consists of a series of reactions of which the rates differ significantly and at least one of the important reactions is very fast, or (2) is exothermic and fast enough to produce problems with removal of heat from the reaction zone to the surroundings. [Pg.260]

Catalysis at interfaces between two immiscible liquid media is a rather wide topic extensively studied in various fields such as organic synthesis, bioenergetics, and environmental chemistry. One of the most common catalytic processes discussed in the literature involves the transfer of a reactant from one phase to another assisted by ionic species referred to as phase-transfer catalyst (PTC). It is generally assumed that the reaction process proceeds via formation of an ion-pair complex between the reactant and the catalyst, allowing the former to transfer to the adjacent phase in order to carry out a reaction homogeneously [179]. However, detailed comparisons between interfacial processes taking place at externally biased and open-circuit junctions have produced new insights into the role of PTC [86,180]. [Pg.231]

When we design commercial polymerization plants we must consider the characteristics of both the monomer and the final product. This allows us to define the optimum configuration to produce a specific polymer. Polymerization reactions can take place in homogeneous solutions or heterogeneous suspensions. For homogeneous processes, the diluted or pure monomer(s) are added directly to one another and the reaction occurs in the media created when mixing the reactants. When the reactants are added directly to one another, the process is referred to as a bulk process. With heterogeneous processes, a phase boundary exists which acts as an interface where the reaction occurs. [Pg.54]

We encounter homogeneous catalysts in both step-growth and chain-growth polymerization processes. We saw several examples of these types of reactions in Chapter 2. For example, the acid catalyzed polymerization of polyesters occurs via a homogeneous process as do some metallocene catalyzed polymerization of polyolefins. [Pg.86]

As previously mentioned, all biologically initiated reactions are basically heterogeneous. However, for practical reasons, the processes in the suspended phase can be considered homogeneous. Processes in biofilms proceed by exchange of electron donors and electron acceptors with the surrounding bulk water phase. These processes are, therefore, heterogeneous. [Pg.29]

Applying the usual steady-state treatment for consecutive first-order reactions kt at 16 torr pressure over the temperature range 597-701 °C is given by 1.8 x 1011 exp(—47,000/Kr) sec Within experimental error, reactions (1) and (2) were homogeneous processes. However, both k2 and k2 were functions of the total pressure in the system. This dependence is shown in Fig. 1. The methyl zinc decomposition is apparently in its second-order region. Therefore, assuming four effective oscillators and a mean temperature of 1050 °K, = Eohs.+i nRT... [Pg.210]

The reaction schemes that can be proposed for these alkyls are basically analogous to those discussed for the tetramethyl compound. The initiation step should be Si-C bond rupture followed by various reactions of ethyl and propyl radicals, free radical attack on the parent alkyl and various polymerization processes. Significant chain reactions involving the alkyls are apparently homogeneous processes and lead to first-order kinetics. The rate coefficients for the... [Pg.243]

Many solid-state reactions may be pictured as proceeding in two steps. First a homogeneous process leads to product molecules dissolved in residual parent matrix. Curtin and Paul, in a review on thermal solid-state reactions (6), divide this step into a number of stages First, there is a loosening of the molecules at the reaction site to be, then molecular change (the true reaction), and finally solid-solution formation. When the concentration of the accumulated product exceeds the solubility limit the second step, the decomposition of this solid solution into separate reactant and product phases, occurs. However, in some cases the solubility limit is very low, so that the overall process appears to become simpler ... [Pg.135]

The mechanism of the electroreductive cyclization reaction has been studied in some detail [22], The initial thought was that it occurred via the cyclization of the radical anion derived, for example, from 25 in the first reduction step. A moment s reflection, however, reveals that there are many more mechanistically viable pathways, especially when one realizes that the transformation involves five steps - two electron transfers (symbolized below by e and d , the latter corresponding to a homogeneous process), two protonations ( p ), and cyclization ( c ). In principle, these could occur in any order, and with any one of the steps being rate-determining. [Pg.9]

Rule 1 applies to homogeneous processes and states that those reactions which are sensitive to the sonochemical effect are those which proceed via radical or radical-ion intermediates. This statement means that sonication is able to effect reactions proceeding through radicals and that ionic reactions are not likely to be modified by such irradiation. [Pg.82]

The resulting material contains 1.25 wt % Re. As it is not stable in the presence of H2O2, it could not be used for olefin epoxidation. Instead, it was tested for aldehyde olefination reactions [62] (Scheme 17). The catalytic activity is lower than that observed for the homogeneous process but is retained even after three catalytic runs. [Pg.165]


See other pages where Reaction homogeneous process is mentioned: [Pg.1947]    [Pg.544]    [Pg.165]    [Pg.155]    [Pg.420]    [Pg.212]    [Pg.280]    [Pg.319]    [Pg.25]    [Pg.264]    [Pg.257]    [Pg.105]    [Pg.472]    [Pg.463]    [Pg.781]    [Pg.1311]    [Pg.61]    [Pg.162]    [Pg.208]    [Pg.211]    [Pg.401]    [Pg.131]    [Pg.115]    [Pg.296]    [Pg.367]    [Pg.573]    [Pg.68]    [Pg.165]    [Pg.93]    [Pg.93]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Electrode processes involving coupled homogeneous reactions

Homogeneous chemical reactions, processes involving

Homogeneous reactions

Homogenization process

Homogenous reactions

Process homogeneous

Processes homogenous

Processes with Coupled Homogeneous Reactions

Reaction homogeneous reactions

© 2024 chempedia.info