Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction, heat standard state

The value of K is very sensitive to small errors in AH and AS° and the equilibrium constant belongs to the reaction equation N2 + 3H2 —> 2NH3. Table 2-1 shows the calculated results of the heats of reaction at standard state (298 K) and at system temperature of 428 K using the software ENTHALP. [Pg.85]

Earlier, it was stated that absolute enthalpy could not be determined for a substance, and therefore we can deal only with changes or differences in this quantity. To simplify calculations of heat of reaction and to make them consistent, we must therefore arbitrarily define a standard state to which we reference all changes in enthalpy for chemical reactions. The standard state used for most engineering calculations is defined as 25°C (298 K) and 1 atm pressure. [Pg.118]

If the whole process is carried out at constant pressure, then all the heat generated goes into increasing the enthalpy of the products. This internally generated heat is designated as Q, where Q = n AH (heat generated by the reaction at standard state conditions), and Q = n Ai/[products] (heat absorbed by the products of the reaction, at adiabatic conditions). [Pg.147]

Enthalpy change on reaction, also called heat of reaction (J) Standard-state enthalpy change on reaction, also called standard heat of reaction (J)... [Pg.703]

The values in Table V-3, which are the values of A// for the reaction X(standard state) —> X(g), are useful in converting values of the heat of formation from atoms. [Pg.741]

There are many compounds in existence which have a considerable positive enthalpy of formation. They are not made by direct union of the constituent elements in their standard states, but by some process in which the necessary energy is provided indirectly. Many known covalent hydrides (Chapter 5) are made by indirect methods (for example from other hydrides) or by supplying energy (in the form of heat or an electric discharge) to the direct reaction to dissociate the hydrogen molecules and also possibly vaporise the other element. Other known endothermic compounds include nitrogen oxide and ethyne (acetylene) all these compounds have considerable kinetic stability. [Pg.77]

AH gg = —43.03 kJ/mol ( — 10.28 kcal/mol) including heat of solution, at standard state m = V) and may require a heat sink to prevent boiling of the reaction mixture. A 30% by weight suspension of MgO in 20°C water boils in the absence of any heat sink. The time to reach boiling is dependent on the reactivity of the MgO raw material, and this time can be only several hours for the more reactive grades of MgO. Investigations of the kinetics of formation of magnesium hydroxide by hydration of MgO have been reported (79). [Pg.348]

Enthalpy of Formation The ideal gas standard enthalpy (heat) of formation (AHJoqs) of chemical compound is the increment of enthalpy associated with the reaction of forming that compound in the ideal gas state from the constituent elements in their standard states, defined as the existing phase at a temperature of 298.15 K and one atmosphere (101.3 kPa). Sources for data are Refs. 15, 23, 24, 104, 115, and 116. The most accurate, but again complicated, estimation method is that of Benson et al. " A compromise between complexity and accuracy is based on the additive atomic group-contribution scheme of Joback his original units of kcal/mol have been converted to kj/mol by the conversion 1 kcal/mol = 4.1868 kJ/moL... [Pg.392]

X The increment in beat content, AH, in the reaction of forming the ven substance from its elements in their standard states. When AH is negative, beat is evolved in the process, and, when positive, heat is absorbed. [Pg.101]

The amonnt of energy that can be released from a given chemical reaction is determined from the energies (enthalpies of formation) of the individnal reactants and prodncts. Enthalpies are nsnally given for snbstances in their standard states, which are the stable states of pnre snbstances at atmospheric pressnre and at 25°C. The overall heat of reaction is the difference between the snms of the standard enthalpies of formation of the prodncts... [Pg.53]

The heal of reaction (see Section 4.4) is defined as tlie enthalpy change of a system undergoing chemical reaction. If the retictants and products are at tlie same temperature and in their standard states, tlie heat of reaction is temied tlie standard lieat of reaction. For engineering purposes, the standard state of a chemical may be taken as tlie pure chemical at I atm pressure. Heat of reaction data for many reactions is available in tlie literature. ... [Pg.123]

There are many ways to express the energy of a molecule. Most common to organic chemists is as a heat of formation, AHf. This is the heat of a hypothetical chemical reaction that creates a molecule from so-called standard states of each of its constituent elements. For example, AHf for methane would be the energy required to create CH4 from graphite and H2, the standard states of carbon and hydrogen, respectively. [Pg.13]

Standard Heat of Reaction. This is the standard enthalpy change accompanying a chemical reaction under the assumptions that the reactants and products exist in their standard states of aggregation at the same T and P, and stoichiometric amounts of reactants take part in the reaction to completion at constant P. With P = 1 atm and T = 25°C as the standard state, AH (T,P) can be written as... [Pg.352]

The standard heat of formation ( AH ) of a chemical compound is the standard heat of reaction corresponding to the chemical combination of its constituent elements to form one mole of the compound, each existing in its standard state at 1 atm and 25°C. It has units of cal/g-mole. [Pg.353]

The standard enthalpy of formation AH°f of a compound is defined as the enthalpy change when one mol of the compound is formed from its constituent elements in the standard state. The enthalpy of formation of the elements is taken as zero. The standard heat of any reaction can be calculated from the heats of formation —AH of the products and reactants if these are available or can be estimated. [Pg.79]

In this expression, Ka is the equilibrium constant at T), and Ka2 is the equilibrium constant at l2. AH0 is the standard heat of reaction (kJ) when all the reactants and products are at standard state, given by ... [Pg.101]

A new evaluation standard for the dehydrogenation catalysts in the superheated liquid-film states is introduced here. This standard is called as the "ratio of heat recuperation" [39], being defined as the ratio of endothermic reaction heat to the denominator of heat supplied from the external thermo-reservoir to the catalyst layer shown as follows (Equations 13.10 and 13.11) ... [Pg.463]

The standard molar enthalpy of formation, A// , is the amount of heat absorbed when 1 mole of the substance is produced from its elements in their standard states. At 25°C, A// of liquid water is -285.8 kJ/mol and A// of water vapor is -241.8 kJ/mol. This means that more heat is released when liquid water is formed from its elements, then when gaseous water is formed from its elements. So, the formation reaction of liquid water is... [Pg.238]

Standard state, for molecules, 24 687—688 Standard state enthalpy change for methanol synthesis, 25 305 Standard-state heat, 24 688 Standard-state heat of reaction, 24 688 Standards-writing organizations, 15 760 Standard Test Conditions (STC), 23 38 Standard test methods, 15 747—748 Standpipe pressure profiles, 11 818 Standpipes, in circulating fluidized beds, 11 817-819 Stand-retting, 11 606 Stannane, 13 613, 24 813... [Pg.881]

Enthalpies of reaction can also be calculated from individual enthalpies of formation (or heats of formation), AHf, for the reactants and products. Because the temperature, pressure, and state of the substance will cause these enthalpies to vary, it is common to use a standard state convention. For gases, the standard state is 1 atm pressure. For a substance in an aqueous solution, the standard state is 1 molar concentration. And for a pure substance (compound or element), the standard state is the most stable form at 1 atm pressure and 25°C. A degree symbol to the right of the H indicates a standard state, AH°. The standard enthalpy of formation of a substance (AHf) is the change in enthalpy when 1 mol of the substance is formed from its elements when all substances are in their standard states. These values are then tabulated and can be used in determining A//°rxn. [Pg.127]

Information on partial molar heat capacities [1,18] is indeed very scarce, hindering the calculation of the temperature correction terms for reactions in solution. In most practical situations, we can only hope that these temperature corrections are similar to those derived for the standard state reactions. Fortunately, due to the upper limits set by the normal boiling temperatures of the solvents, the temperatures of reactions in solution are not substantially different from 298.15 K, so large ArCp(T - 298.15) corrections are uncommon. [Pg.13]

One of the most important thermodynamic facts to know about a given chemical reaction is the change in energy or heat content associated with the reaction at some specified temperature, where each of the reactants and products is in an appropriate standard state. This change is known either as the energy or as the heat of reaction at the specified temperature. [Pg.2]

It is, of course, not necessary to have an extensive list of heats of reaction to determine the heat absorbed or evolved in every possible chemical reaction. A more convenient and logical procedure is to list the standard heats of formation of chemical substances. The standard heat of formation is the enthalpy of a substance in its standard state referred to its elements in their standard states at the same temperature. From this definition it is obvious that heats of formation of the elements in their standard states are zero. [Pg.4]

The JANAF tables specify a volatilization temperature of a condensed-phase material to be where the standard-state free energy A Gf approaches zero for a given equilibrium reaction, that is, M/fyl), M/)y(g). One can obtain a heat of vaporization for materials such as Li20(l), FeO(l), BeO(l), and MgO(l), which also exist in the gas phase, by the differences in the All" of the condensed and gas phases at this volatilization temperature. This type of thermodynamic calculation attempts to specify a true equilibrium thermodynamic volatilization temperature and enthalpy of volatilization at 1 atm. Values determined in this manner would not correspond to those calculated by the approach described simply because the procedure discussed takes into account the fact that some of the condensed-phase species dissociate upon volatilization. [Pg.504]

The enthalpy change of a chemical reaction is known as the enthalpy of reaction, AHrxn- The enthalpy of reaction is dependent on conditions such as temperature and pressure. Therefore, chemists often talk about the standard enthalpy of reaction, AH°rxn - the enthalpy change of a chemical reaction that occurs at SATP (25 C and 100 kPa). Often, Alf n is written simply as AW°, The symbol is called nought. It refers to a property of a substance at a standard state or under standard conditions. You may see the enthalpy of reaction referred to as the heat of reaction in other chemistry books. [Pg.223]

In Fig. 1, various elements involved with the development of detailed chemical kinetic mechanisms are illustrated. Generally, the objective of this effort is to predict macroscopic phenomena, e.g., species concentration profiles and heat release in a chemical reactor, from the knowledge of fundamental chemical and physical parameters, together with a mathematical model of the process. Some of the fundamental chemical parameters of interest are the thermochemistry of species, i.e., standard state heats of formation (A//f(To)), and absolute entropies (S(Tq)), and temperature-dependent specific heats (Cp(7)), and the rate parameter constants A, n, and E, for the associated elementary reactions (see Eq. (1)). As noted above, evaluated compilations exist for the determination of these parameters. Fundamental physical parameters of interest may be the Lennard-Jones parameters (e/ic, c), dipole moments (fi), polarizabilities (a), and rotational relaxation numbers (z ,) that are necessary for the calculation of transport parameters such as the viscosity (fx) and the thermal conductivity (k) of the mixture and species diffusion coefficients (Dij). These data, together with their associated uncertainties, are then used in modeling the macroscopic behavior of the chemically reacting system. The model is then subjected to sensitivity analysis to identify its elements that are most important in influencing predictions. [Pg.99]

That is, the equilibrium constant (K ) for an elementary reaction at any temperature is related to the ratio of the rates for the forward (fcf) and backward (k ) rate coefficients. The can be determined from the knowledge of the standard state AHf and S of all the species participating in the elementary reaction, and the temperature-dependent specific heats. [Pg.112]


See other pages where Reaction, heat standard state is mentioned: [Pg.20]    [Pg.72]    [Pg.506]    [Pg.239]    [Pg.101]    [Pg.118]    [Pg.57]    [Pg.624]    [Pg.352]    [Pg.210]    [Pg.17]    [Pg.364]    [Pg.233]    [Pg.232]    [Pg.467]    [Pg.15]    [Pg.121]    [Pg.8]    [Pg.179]    [Pg.15]    [Pg.498]    [Pg.9]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Chemical reaction standard state heat

Reaction heat

Standard reaction

Standard state

© 2024 chempedia.info