Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction conditions, role

The rate law draws attention to the role of component concentrations. AH other influences are lumped into coefficients called reaction rate constants. The are not supposed to change as concentrations change during the course of the reaction. Although are referred to as rate constants, they change with temperature, solvent, and other reaction conditions, even if the form of the rate law remains the same. [Pg.508]

There is a large range of resins available for SPOS. These resins are derivatised polymer supports with a range of linkers. The roles of linkers are (i) to provide point(s) of attachment for the tethered molecule, akin to a solid supported protecting group(s), (ii) to provide distance from the polymeric backbone in order to minimise interactions with the backbone, (iii) to enable cleavage of product molecules under conditions compatible with the stability of the molecules and the reaction conditions employed for chemical transformations. Hence in order to... [Pg.74]

Kinetics is the branch of science concerned with the rates of chemical reactions. The study of enzyme kinetics addresses the biological roles of enzymatic catalysts and how they accomplish their remarkable feats. In enzyme kinetics, we seek to determine the maximum reaction velocity that the enzyme can attain and its binding affinities for substrates and inhibitors. Coupled with studies on the structure and chemistry of the enzyme, analysis of the enzymatic rate under different reaction conditions yields insights regarding the enzyme s mechanism of catalytic action. Such information is essential to an overall understanding of metabolism. [Pg.431]

Ionic liquids with wealdy coordinating, inert anions (such as [(CF3S02)2N] , [BFJ , or [PFg] under anhydrous conditions) and inert cations (cations that do not coordinate to the catalyst themselves, nor form species that coordinate to the catalyst under the reaction conditions used) can be looked on as innocent solvents in transition metal catalysis. In these cases, the role of the ionic liquid is solely to provide a more or less polar, more or less weakly coordinating medium for the transition metal catalyst, but which additionally offers special solubility for feedstock and products. [Pg.221]

As inert as the C-25 lactone carbonyl has been during the course of this synthesis, it can serve the role of electrophile in a reaction with a nucleophile. For example, addition of benzyloxymethyl-lithium29 to a cold (-78 °C) solution of 41 in THF, followed by treatment of the intermediate hemiketal with methyl orthoformate under acidic conditions, provides intermediate 42 in 80% overall yield. Reduction of the carbon-bromine bond in 42 with concomitant -elimination of the C-9 ether oxygen is achieved with Zn-Cu couple and sodium iodide at 60 °C in DMF. Under these reaction conditions, it is conceivable that the bromine substituent in 42 is replaced by iodine, after which event reductive elimination occurs. Silylation of the newly formed tertiary hydroxyl group at C-12 with triethylsilyl perchlorate, followed by oxidative cleavage of the olefin with ozone, results in the formation of key intermediate 3 in 85 % yield from 42. [Pg.245]

These side reactions may occur if the /V-acyliminium ion is not trapped quickly enough by a nucleophile. So problems may arise with relatively poor nucleophiles or if there is too much steric hindrance, while in the case of intramolecular reactions, unfavorable stereoelectronic factors or intended formation of medium- or large-sized rings may play a role. The reaction conditions, such as the nature of the (acidic) catalyst and the solvent, may also be of importance. [Pg.804]

The role of the two oxidation states of copper in the aryl dimerization was investigated by Cohen et al. (1974). The reaction conditions used by these authors were, however, different in several respects from those of the two cases discussed before. [Pg.260]

Under the present reaction conditions, we observed the formation of succinic anhydride almost simultaneously together with the formation of GBL. The hydrogaiation of maleic anhydride yields succinic anhydride, and the subsequent hydrogenation of succinic anhydride produces GBL. The rate of hydrogenation of maleic anhydride to succinic anhydride was very fast compare to that of succinic anhydride to GBL. When the reaction was CEuried out wifliout solvent, tetrahydrofiiran was not producal. The above results indicate that the Pd-Mo-Ni/SiOz catalyst under our experimental conditions played an important role for the selective formation of GBL. Therefore, it is inferred that the catalyst composition may influence the route by which tetrahydrofiiran was formed, probably due to the different absorption mechanism of maleic anhydride, succinic anhydride, and GBL. [Pg.827]

Cr(VI) is normally reduced to Cr(III) since Cr(V) and Cr(IV) are very unstable under ordinary reaction conditions. Westheimer has discussed critically the roles of Cr(V) and Cr(lV) as reactive intermediates, vide infra), and Wiberg has summarised the inorganic chemistry of compounds containing Cr(V) and Cr(IV). [Pg.278]

From the results discussed above as well as from the literature data [5-10,12-14] it follows that an important role of O2 in the SCR process is to convert NO into NOj. The latter then initiates methane oxidation into CO, and is itself reduced into NO and N2. Both NO, and O2 may participate in CH4 oxidation (Fig. 1B) and the ratio between the rates of these competitive oxidation reactions will be critical for the selectivity of the SCR process. Hence, the absolute rates of CH4 oxidation by Oj were compared with those occurring in the SCR process. The rates of these reactions were determined under different reaction conditions (using the... [Pg.652]

In this chapter the potential of nanostructured metal systems in catalysis and the production of fine chemicals has been underlined. The crucial role of particle size in determining the activity and selectivity of the catalytic systems has been pointed out several examples of important reactions have been presented and the reaction conditions also described. Metal Vapor Synthesis has proved to be a powerful tool for the generation of catalytically active microclusters SMA and nanoparticles. SMA are unique homogeneous catalytic precursors and they can be very convenient starting materials for the gentle deposition of catalytically active metal nanoparticles of controlled size. [Pg.450]

Early attempts by Asinger to enlarge the scope of hydroalumination by the use of transition metal catalysts included the conversion of mixtures of isomeric linear alkenes into linear alcohols by hydroalumination with BU3AI or BU2AIH at temperatures as high as 110°C and subsequent oxidation of the formed organoaluminum compounds [12]. Simple transition metal salts were used as catalysts, including tita-nium(IV) and zirconium(IV) chlorides and oxochlorides. The role of the transition metal in these reactions is likely limited to the isomerization of internal alkenes to terminal ones since no catalyst is required for the hydroalumination of a terminal alkene under these reaction conditions. [Pg.49]

Nearly quantitative yields of acetonitrile can be obtained by passing mixtures of NH3 and acetylene over zircon at 400-500°C [225], over CviOy on Y-alumina at 360°C [226] or by passing mixtures of NH, acetylene and hydrogen at 400-420°C over a mixture of zinc and thorium oxides on silica [227] or at 300-450°C over zinc oxide or zinc sulfate or zinc chloride on silica [228, 229], In such reactions, the role of traces of water has often been questioned. However, acetonitrile could be obtained under rigorously anhydrous conditions, thus demonstrating the direct amination of acetylene with NH,. It was also reported that ethyUdeneimine can be obtained in up to 26% yield [225], However, in the Ught of more recent work [230, 231] the product was most probably 2,4,6-trimethyl-l,3,5-hexahydrotriazine. [Pg.116]

The role of oxygen on the allyhc oxidation of cyclohexene over the FePcCli6-S/TBHP catalytic system was determined by using 2 labelled oxygen. Since more than 70% of the main cyclohexene oxidation products, 4,11, and 12, had labelled oxygen, we can assure that molecular oxygen acts as co-oxidant. However, under the reaction conditions the over-oxidation of 4 seems to be unavoidable. Labelled 2, 3- epoxy-l-cyclohexanone (13), 2-cyclohexen-l, 4-dione (14), and 4-hydroxy-2-cyclohexen-l-one (15) were detected as reaction products. [Pg.439]


See other pages where Reaction conditions, role is mentioned: [Pg.543]    [Pg.48]    [Pg.155]    [Pg.292]    [Pg.294]    [Pg.103]    [Pg.78]    [Pg.2]    [Pg.143]    [Pg.132]    [Pg.293]    [Pg.396]    [Pg.470]    [Pg.61]    [Pg.1345]    [Pg.9]    [Pg.62]    [Pg.163]    [Pg.164]    [Pg.394]    [Pg.300]    [Pg.30]    [Pg.32]    [Pg.561]    [Pg.75]    [Pg.208]    [Pg.202]    [Pg.298]    [Pg.279]    [Pg.367]    [Pg.529]    [Pg.258]    [Pg.258]    [Pg.732]   
See also in sourсe #XX -- [ Pg.38 , Pg.337 ]




SEARCH



Reaction condition

© 2024 chempedia.info