Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ratio species

In the liquid phase the loss of light (low C/H atomic ratio) species from the surface causes a concentration profile to be established for each compound. The lighter compounds, being deficient at the surface, diffuse to the surface and the heavier compounds, being concentrated at the surface, diffuse towards the center of the droplet. The combined effects of vaporization and diffusion determine the surface composition and thereby the surface temperature. This combination of temperature and composition determines the relative volatilities of the species present at the surface and hence the vapor phase composition. [Pg.113]

In the section Factors controlling DMSP production , we have given an update of the DMSP C ratios in various phytoplankton groups and explained how abiotic factors can affect these ratios. Species composition has the largest impact on the DMSP C ratio. Light and temperature appear to affect the DMSP C ratio by a factor of 2-3 and nutrients may only have an effect on species with low levels of intracellular DMSP. [Pg.270]

As described above for the amorphous aluminosilicates the acid strength of a zeolite increases with increasing Si Al ratios. Species with particularly high ratios have been prepared by removing some of the aluminum by reaction with materials such as silicon tetrachloride. On the other hand, the basic character of these materials increases with increasing numbers of A104 species so aluminum-rich zeolites are better bases, particularly when the Na" " is replaced with a large cation such as Cs. 52... [Pg.196]

Thermolysis of the ether (547) and its geometrical isomer, either together or separately, led to a mixture of products among which (in 30% yield) are the cyclopentyl ketone (548) and its epimer in a ca. 50 50 ratio. Species (548) and its epimer are... [Pg.271]

The high proximity ratio species is assigned to folded molecules and the lower proximity ratio species assigned to unfolded molecules. A further discussion relating to the number of peaks that are observed, and the conditions in which one will observe distinct peaks for species in dynamic equilibrium is given in later subsections. [Pg.55]

The total enthalpy correction due to chemical reactions is the sum of all the enthalpies of dimerization for each i-j pair multiplied by the mole fraction of dimer i-j. Since this gives the enthalpy correction for one mole of true species, we multiply this quantity by the ratio of the true number of moles to the stoichiometric number of moles. This gives... [Pg.136]

On metals in particular, the dependence of the radiation absorption by surface species on the orientation of the electrical vector can be fiilly exploited by using one of the several polarization techniques developed over the past few decades [27, 28, 29 and 30], The idea behind all those approaches is to acquire the p-to-s polarized light intensity ratio during each single IR interferometer scan since the adsorbate only absorbs the p-polarized component, that spectral ratio provides absorbance infonnation for the surface species exclusively. Polarization-modulation mediods provide the added advantage of being able to discriminate between the signals due to adsorbates and those from gas or liquid molecules. Thanks to this, RAIRS data on species chemisorbed on metals have been successfidly acquired in situ under catalytic conditions [31], and even in electrochemical cells [32]. [Pg.1782]

There is more to tire Wilkinson hydrogenation mechanism tlian tire cycle itself a number of species in tire cycle are drained away by reaction to fomi species outside tire cycle. Thus, for example, PPh (Ph is phenyl) drains rhodium from tire cycle and tlius it inliibits tire catalytic reaction (slows it down). However, PPh plays anotlier, essential role—it is part of tire catalytically active species and, as an electron-donor ligand, it affects tire reactivities of tire intemiediates in tire cycle in such a way tliat tliey react rapidly and lead to catalysis. Thus, tliere is a tradeoff tliat implies an optimum ratio of PPh to Rli. [Pg.2703]

Figure C2.13.7. Change between polymerizing and etching conditions in a fluorocarbon plasma as detennined by tire fluorine-to-carbon ratio of chemically reactive species and tire bias voltage applied to tire substrate surface [36]. Figure C2.13.7. Change between polymerizing and etching conditions in a fluorocarbon plasma as detennined by tire fluorine-to-carbon ratio of chemically reactive species and tire bias voltage applied to tire substrate surface [36].
Nitric acid being the solvent, terms involving its concentration cannot enter the rate equation. This form of the rate equation is consistent with reaction via molecular nitric acid, or any species whose concentration throughout the reaction bears a constant ratio to the stoichiometric concentration of nitric acid. In the latter case the nitrating agent may account for any fraction of the total concentration of acid, provided that it is formed quickly relative to the speed of nitration. More detailed information about the mechanism was obtained from the effects of certain added species on the rate of reaction. [Pg.8]

Phenylboronic acid. The orientation of nitration in phenylboronic acid is very susceptible to changes in the medium (table 5.8). The high proportion of o-substitution in acetic anhydride is not attributable to a specific o-reaction, for the nt -ratios of the last tabulated pair of results are not constant. The marked change in the ratio was considered to be due to the formation in acetic anhydride of a complex, as illustrated below, which is 0 -orienting and activated as a result of the -t-1 effect. This species need only be formed in a small concentration to overwhelm... [Pg.98]

If acetoxylation were a conventional electrophilic substitution it is hard to understand why it is not more generally observed in nitration in acetic anhydride. The acetoxylating species is supposed to be very much more selective than the nitrating species, and therefore compared with the situation in (say) toluene in which the ratio of acetoxylation to nitration is small, the introduction of activating substituents into the aromatic nucleus should lead to an increase in the importance of acetoxylation relative to nitration. This is, in fact, observed in the limited range of the alkylbenzenes, although the apparently severe steric requirement of the acetoxylation species is a complicating feature. The failure to observe acetoxylation in the reactions of compounds more reactive than 2-xylene has been attributed to the incursion of another mechan-104... [Pg.104]

The selectivity of an electrophile, measured by the extent to which it discriminated either between benzene and toluene, or between the meta- and ara-positions in toluene, was considered to be related to its reactivity. Thus, powerful electrophiles, of which the species operating in Friedel-Crafts alkylation reactions were considered to be examples, would be less able to distinguish between compounds and positions than a weakly electrophilic reagent. The ultimate electrophilic species would be entirely insensitive to the differences between compounds and positions, and would bring about reaction in the statistical ratio of the various sites for substitution available to it. The idea has gained wide acceptance that the electrophiles operative in reactions which have low selectivity factors Sf) or reaction constants (p+), are intrinsically more reactive than the effective electrophiles in reactions which have higher values of these parameters. However, there are several aspects of this supposed relationship which merit discussion. [Pg.141]

In the alkylative cyclization of the 1,6-enyne 372 with vinyl bromide, formation of both the five-membered ring 373 by exn mode carbopalladation and isomerization of the double bonds and the six-membered ring 374 by endo mode carbopalladation are observed[269]. Their ratio depends on the catalytic species. Also, the cyclization of the 1,6-enyne 375 with /i-bromostyrene (376) affords the endo product 377. The exo mode cyclization is commonly observed in many cases, and there are two possible mechanistic explanations for that observed in these examples. One is direct endo mode carbopalladation. The other is the exo mode carbopalladation to give 378 followed by cyclopropana-tion to form 379, and the subsequent cyclopropylcarbinyl-homoallyl rearrangement affords the six-membered ring 380. Careful determination of the E or Z structure of the double bond in the cyclized product 380 is crucial for the mechanistic discussion. [Pg.180]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Charge diagrams suggest that the 2-amino-5-halothiazoles are less sensitive to nucleophilic attack on 5-position than their thiazole counterpart. Recent kinetic data on this reactivity however, show, that this expectation is not fulfilled (67) the ratio fc.. bron.c.-2-am.noih.azoie/ -biomoth.azoie O"" (reaction with sodium methoxide) emphasizes the very unusual amino activation to nucleophilic substitution. The reason of this activation could lie in the protomeric equilibrium, the reactive species being either under protomeric form 2 or 3 (General Introduction to Protomeric Thiazoles). The reactivity of halothiazoles should, however, be reinvestigated under the point of view of the mechanism (1690). [Pg.18]

Avery s paper prompted other biochemists to rethink their ideas about DNA One of them Erwin Chargaff of Columbia University soon discovered that the distribution of adenine thymine cytosine and guanine differed from species to species but was the same within a species and within all the cells of a species Perhaps DNA did have the capacity to carry genetic information after all Chargaff also found that regardless of the source of the DNA half the bases were purines and the other half were pyrimidines Significantly the ratio of the purine adenine (A) to the pyrimidine thymine (T) was always close to 1 1 Likewise the ratio of the purine guanine (G) to the pyrimidine cyto sine (C) was also close to 1 1 For human DNA the values are... [Pg.1166]

Normality is the number of equivalent weights (EW) per unit volume and, like formality, is independent of speciation. An equivalent weight is defined as the ratio of a chemical species formula weight (FW) to the number of its equivalents... [Pg.17]


See other pages where Ratio species is mentioned: [Pg.341]    [Pg.48]    [Pg.510]    [Pg.95]    [Pg.6093]    [Pg.759]    [Pg.427]    [Pg.6092]    [Pg.341]    [Pg.48]    [Pg.510]    [Pg.95]    [Pg.6093]    [Pg.759]    [Pg.427]    [Pg.6092]    [Pg.252]    [Pg.263]    [Pg.297]    [Pg.366]    [Pg.311]    [Pg.787]    [Pg.1564]    [Pg.1927]    [Pg.1936]    [Pg.2785]    [Pg.2808]    [Pg.492]    [Pg.578]    [Pg.53]    [Pg.55]    [Pg.79]    [Pg.186]    [Pg.59]    [Pg.94]    [Pg.97]    [Pg.101]    [Pg.2]    [Pg.424]    [Pg.481]    [Pg.1165]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Deconvolution, species ratios

Isotope ratio mass spectrometry species

© 2024 chempedia.info